論文の概要: Reducing Estimation Uncertainty Using Normalizing Flows and Stratification
- arxiv url: http://arxiv.org/abs/2602.10706v1
- Date: Wed, 11 Feb 2026 10:08:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-12 21:44:01.737305
- Title: Reducing Estimation Uncertainty Using Normalizing Flows and Stratification
- Title(参考訳): 正規化流れと成層化を用いた不確かさの低減
- Authors: Paweł Lorek, Rafał Topolnicki, Tomasz Trzciński, Maciej Zięba, Aleksandra Krystecka,
- Abstract要約: 現在の方法論では、ガウス分布や混合ガウス分布のような(半)分布を仮定し、これらの仮定が成り立たない場合、かなりの推定の不確実性をもたらす。
本研究では,パラメータ化されたニューラルネットワークを活用し,未知のデータ分布をモデル化する際の柔軟性を高めるため,階層化サンプリングと統合されたフローベースモデルを提案する。
提案モデルでは,高次元(30と128)データを含む複数のデータセットにおける推定の不確実性の顕著な低減が示されている。
- 参考スコア(独自算出の注目度): 36.94429692322632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating the expectation of a real-valued function of a random variable from sample data is a critical aspect of statistical analysis, with far-reaching implications in various applications. Current methodologies typically assume (semi-)parametric distributions such as Gaussian or mixed Gaussian, leading to significant estimation uncertainty if these assumptions do not hold. We propose a flow-based model, integrated with stratified sampling, that leverages a parametrized neural network to offer greater flexibility in modeling unknown data distributions, thereby mitigating this limitation. Our model shows a marked reduction in estimation uncertainty across multiple datasets, including high-dimensional (30 and 128) ones, outperforming crude Monte Carlo estimators and Gaussian mixture models. Reproducible code is available at https://github.com/rnoxy/flowstrat.
- Abstract(参考訳): サンプルデータから確率変数の実値関数の期待値を推定することは統計解析の重要な側面であり、様々な応用に大きく影響している。
現在の方法論は通常、ガウスあるいは混合ガウスのような(半)パラメトリック分布を仮定し、これらの仮定が成り立たない場合、かなりの推定の不確実性をもたらす。
本稿では,パラメータ化されたニューラルネットワークを利用して,未知のデータ分布のモデリングにおける柔軟性を向上し,この制限を緩和する,階層化サンプリングと統合されたフローベースモデルを提案する。
提案モデルでは,高次元(30および128)モデル,粗モンテカルロ推定器,ガウス混合モデルなど,複数のデータセットにおける推定の不確かさの顕著な低減が示されている。
再現可能なコードはhttps://github.com/rnoxy/flowstrat.comで入手できる。
関連論文リスト
- Partially factorized variational inference for high-dimensional mixed models [0.0]
変分推論は、特にベイズ的文脈において、そのような計算を行う一般的な方法である。
標準平均場変動推論は,高次元の後方不確かさを劇的に過小評価することを示した。
次に、平均場仮定を適切に緩和すると、不確実な定量化が高次元で悪化しない手法が導かれることを示す。
論文 参考訳(メタデータ) (2023-12-20T16:12:37Z) - Uncertainty quantification and out-of-distribution detection using
surjective normalizing flows [46.51077762143714]
本稿では,深層ニューラルネットワークモデルにおける分布外データセットの探索的正規化フローを用いた簡単なアプローチを提案する。
本手法は, 流通外データと流通内データとを確実に識別できることを示す。
論文 参考訳(メタデータ) (2023-11-01T09:08:35Z) - Deep Evidential Learning for Bayesian Quantile Regression [3.6294895527930504]
1つの決定論的フォワードパスモデルから正確な不確実性を推定することが望ましい。
本稿では,ガウス的仮定を使わずに連続目標分布の量子化を推定できるディープベイズ量子回帰モデルを提案する。
論文 参考訳(メタデータ) (2023-08-21T11:42:16Z) - Estimating Regression Predictive Distributions with Sample Networks [17.935136717050543]
モデル不確実性に対する一般的なアプローチは、パラメトリック分布を選択し、最大推定を用いてデータに適合させることである。
選択されたパラメトリック形式は、データ生成分布に不適合であり、信頼できない不確実性推定をもたらす。
出力分布にパラメトリック形式を指定することを避けるため,不確実性をモデル化するためのフレキシブルでスケーラブルなアーキテクチャであるSampleNetを提案する。
論文 参考訳(メタデータ) (2022-11-24T17:23:29Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - Uncertainty Intervals for Graph-based Spatio-Temporal Traffic Prediction [0.0]
本研究では,従来の時間ステップの測定値から密度を推定するよう訓練された時空間ニューラルネットワークを提案する。
この密度推定法はニューラルネットワークによって完全にパラメータ化され, 内部では近似値を用いない。
このアプローチは、モンテカルロドロップアウトのような推論中にサンプリングする必要なしに不確実性推定を生成する。
論文 参考訳(メタデータ) (2020-12-09T18:02:26Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
我々は,人口レベルでのアルゴリズムの決定論的収束率と,$n$サンプルに基づく経験的対象に適用した場合の(不安定性)の間の相互作用に基づいて,統計的精度を得るフレームワークを開発する。
本稿では,ガウス混合推定,非線形回帰モデル,情報的非応答モデルなど,いくつかの具体的なモデルに対する一般結果の応用について述べる。
論文 参考訳(メタデータ) (2020-05-22T22:30:52Z) - Maximum likelihood estimation and uncertainty quantification for
Gaussian process approximation of deterministic functions [10.319367855067476]
本稿は、ガウス過程の回帰の文脈において、ノイズのないデータセットを用いた最初の理論的分析の1つを提供する。
本稿では,スケールパラメータのみの最大推定がガウス過程モデルの不特定に対する顕著な適応をもたらすことを示す。
論文 参考訳(メタデータ) (2020-01-29T17:20:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。