論文の概要: Travel Time Prediction from Sparse Open Data
- arxiv url: http://arxiv.org/abs/2602.15069v1
- Date: Sat, 14 Feb 2026 20:28:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-18 16:03:17.846641
- Title: Travel Time Prediction from Sparse Open Data
- Title(参考訳): スパースオープンデータからの走行時間予測
- Authors: Geoff Boeing, Yuquan Zhou,
- Abstract要約: 本稿は、広範囲なデータや計算要求を伴わずに、合理的に正確な走行時間予測を提供するために、中間層が必要である、と論じる。
最小限のコスト、データ、計算要件を備えた、オープンソースで最小限に混雑した運転時間予測モデルを導入している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Travel time prediction is central to transport geography and planning's accessibility analyses, sustainable transportation infrastructure provision, and active transportation interventions. However, calculating accurate travel times, especially for driving, requires either extensive technical capacity and bespoke data, or resources like the Google Maps API that quickly become prohibitively expensive to analyze thousands or millions of trips necessary for metropolitan-scale analyses. Such obstacles particularly challenge less-resourced researchers, practitioners, and community advocates. This article argues that a middle-ground is needed to provide reasonably accurate travel time predictions without extensive data or computing requirements. It introduces a free, open-source minimally-congested driving time prediction model with minimal cost, data, and computational requirements. It trains and tests this model using the Los Angeles, California urban area as a case study by calculating naive travel times from open data then developing a random forest model to predict travel times as a function of those naive times plus open data on turns and traffic controls. Validation shows that this interpretable machine learning method offers a superior middle-ground technique that balances reasonable accuracy with minimal resource requirements.
- Abstract(参考訳): 旅行時間の予測は、地理と計画のアクセシビリティ分析、持続可能な交通インフラの提供、そして積極的な交通介入の中心である。
しかし、特に運転に要する正確な走行時間を計算するには、膨大な技術的能力と余計なデータを必要とするか、大都市圏での分析に必要な何千万もの旅行を分析するのに、Google Maps APIのようなリソースが急速に高価になっている。
このような障害は、低リソースの研究者、実践家、コミュニティの支持者に特に挑戦する。
本稿は、広範囲なデータや計算要求を伴わずに、合理的に正確な走行時間予測を提供するために、中間層が必要である、と論じる。
最小限のコスト、データ、計算要件を備えた、オープンソースで最小限に混雑した運転時間予測モデルを導入している。
同社はこのモデルをロサンゼルス、カリフォルニアの都市部を使って、オープンデータからナイーブな旅行時間を計算し、ランダムな森林モデルを構築して、これらのナイーブな時間とターン上のオープンなデータとトラフィックコントロールの関数として、旅行時間を予測してテストしている。
検証により、この解釈可能な機械学習手法は、最小限のリソース要件と合理的な精度のバランスをとる優れた中盤技術を提供することが示された。
関連論文リスト
- Multi-Source Urban Traffic Flow Forecasting with Drone and Loop Detector Data [61.9426776237409]
ドローンが捉えたデータは、大規模都市ネットワークのための正確なマルチセンサー移動観測所を作ることができる。
単純なグラフベースモデルHiMSNetは、複数のデータモダリティと学習時間相関を統合するために提案されている。
論文 参考訳(メタデータ) (2025-01-07T03:23:28Z) - Deep Learning for Trajectory Data Management and Mining: A Survey and Beyond [58.63558696061679]
軌道計算は、位置サービス、都市交通、公共安全など、様々な実用用途において重要である。
トラジェクトリ・コンピューティングのためのディープラーニング(DL4Traj)の開発と最近の進歩について概観する。
特に、軌道計算を増強する可能性を持つ大規模言語モデル(LLM)の最近の進歩をカプセル化する。
論文 参考訳(メタデータ) (2024-03-21T05:57:27Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - Traffic Prediction with Transfer Learning: A Mutual Information-based
Approach [11.444576186559487]
そこで我々は,他の都市からのビッグデータを用いて交通予測を行う都市間交通予測手法であるTrafficTLを提案する。
TrafficTLは3つの実世界のデータセットの包括的なケーススタディによって評価され、最先端のベースラインを約8~25%上回る。
論文 参考訳(メタデータ) (2023-03-13T15:27:07Z) - Meta-Learning over Time for Destination Prediction Tasks [53.12827614887103]
交通分野における公共目的と民間目標の両方を、車両の行動を理解し、予測する必要がある。
近年の研究では、時間情報の導入による予測性能の限界改善しか見出されていない。
本稿では、ニューラルネットワークが入力に応じて自身の重みを変えることを学習するハイパーネットワークに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2022-06-29T17:58:12Z) - A Data-Driven Analytical Framework of Estimating Multimodal Travel
Demand Patterns using Mobile Device Location Data [5.902556437760098]
本稿では,スマートフォンの位置データからマルチモーダル旅行需要パターンを抽出するデータ駆動分析フレームワークを提案する。
トラベルモードインプテーションのための訓練された単層モデルとディープニューラルネットワークを開発した。
この枠組みは、近隣の鉄道、地下鉄、高速道路、バス路線への交通ルートの近接性を評価するためにマルチモーダル交通網も組み込んでいる。
論文 参考訳(メタデータ) (2020-12-08T22:49:44Z) - Boosting Algorithms for Delivery Time Prediction in Transportation
Logistics [2.147325264113341]
旅行時間の予測は郵便サービスの遅延を軽減できることを示す。
光勾配ブースティングやカソーストなどのブースティングアルゴリズムは、精度と実行効率の点で高い性能を持つ。
論文 参考訳(メタデータ) (2020-09-24T11:01:22Z) - Travel Time Prediction using Tree-Based Ensembles [4.74324101583772]
本稿では,都市シナリオにおける2つの任意の地点間の移動時間予測の課題について考察する。
我々はこの問題を2つの時間的視点から見る: 長期予測は数日間、短期予測は1時間である。
論文 参考訳(メタデータ) (2020-05-28T07:43:54Z) - BusTime: Which is the Right Prediction Model for My Bus Arrival Time? [3.1761486589684975]
本稿では, このギャップを補うために, 広く用いられている予測モデルを解析するための汎用的, 実用的な評価枠組みを提案する。
特に、このフレームワークには、入力データポイントをはるかに少なくする生のバスGPSデータ前処理方法が含まれている。
また,都市マネジャーに対して,一般的な予測モデルのトレーニングおよび予測段階における実践的強みと弱みを分析し,予備的な結果を提示する。
論文 参考訳(メタデータ) (2020-03-20T17:03:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。