論文の概要: Robust Stochastic Gradient Posterior Sampling with Lattice Based Discretisation
- arxiv url: http://arxiv.org/abs/2602.15925v1
- Date: Tue, 17 Feb 2026 18:09:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-19 15:58:30.402307
- Title: Robust Stochastic Gradient Posterior Sampling with Lattice Based Discretisation
- Title(参考訳): 格子に基づく離散化を用いたロバスト確率勾配後方サンプリング
- Authors: Zier Mensch, Lars Holdijk, Samuel Duffield, Maxwell Aifer, Patrick J. Coles, Max Welling, Miranda C. N. Cheng,
- Abstract要約: MCMC法は拡張性のある後方サンプリングを可能にするが、しばしばミニバッチサイズや勾配ノイズに対する感度に悩まされる。
格子ランダムウォークの離散化の拡張であるグラディエントランダムウォーク(SGLRW)を提案する。
- 参考スコア(独自算出の注目度): 20.44428092865608
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stochastic-gradient MCMC methods enable scalable Bayesian posterior sampling but often suffer from sensitivity to minibatch size and gradient noise. To address this, we propose Stochastic Gradient Lattice Random Walk (SGLRW), an extension of the Lattice Random Walk discretization. Unlike conventional Stochastic Gradient Langevin Dynamics (SGLD), SGLRW introduces stochastic noise only through the off-diagonal elements of the update covariance; this yields greater robustness to minibatch size while retaining asymptotic correctness. Furthermore, as comparison we analyze a natural analogue of SGLD utilizing gradient clipping. Experimental validation on Bayesian regression and classification demonstrates that SGLRW remains stable in regimes where SGLD fails, including in the presence of heavy-tailed gradient noise, and matches or improves predictive performance.
- Abstract(参考訳): 確率勾配MCMC法は、スケーラブルなベイズ後方サンプリングを可能にするが、しばしばミニバッチサイズや勾配雑音に対する感度に悩まされる。
そこで我々はSGLRW(Stochastic Gradient Lattice Random Walk)を提案する。
従来の確率勾配ランゲヴィンダイナミクス(SGLD)とは異なり、SGLRWは更新共分散の外部対角要素を通してのみ確率ノイズを導入し、漸近的正しさを維持しながら、最小サイズへのロバスト性を高める。
さらに,SGLDの自然なアナログを勾配クリッピングを用いて解析する。
ベイズ回帰と分類に関する実験的検証により、SGLRWは重み付き勾配雑音の存在を含むSGLDが故障した状況下で安定であり、一致または予測性能の向上を示す。
関連論文リスト
- Flatness-Aware Stochastic Gradient Langevin Dynamics [8.884140046635268]
ディープラーニングアルゴリズムの一般化は、ロスランドスケープにおける平坦なミニマの追求に収束する。
グラディエント・ランゲヴィン・ダイナミクス(SGLD)は、そのような低トレース正規化目標を確立するバイアスを与えないことを示す。
論文 参考訳(メタデータ) (2025-10-02T16:24:46Z) - Gradient Normalization Provably Benefits Nonconvex SGD under Heavy-Tailed Noise [60.92029979853314]
重み付き雑音下でのグラディエントDescence(SGD)の収束を確実にする上での勾配正規化とクリッピングの役割について検討する。
我々の研究は、重尾雑音下でのSGDの勾配正規化の利点を示す最初の理論的証拠を提供する。
我々は、勾配正規化とクリッピングを取り入れた加速SGD変種を導入し、さらに重み付き雑音下での収束率を高めた。
論文 参考訳(メタデータ) (2024-10-21T22:40:42Z) - Robust Approximate Sampling via Stochastic Gradient Barker Dynamics [0.0]
本稿では,Langevin に基づくサンプリングアルゴリズムの頑健な代替である Barker gradient dynamics (SGBD) アルゴリズムを勾配フレームワークに導入する。
本稿では,バーカー遷移機構に対する勾配の影響を特徴付けるとともに,勾配雑音による誤差を除去するバイアス補正版を開発する。
論文 参考訳(メタデータ) (2024-05-14T23:47:02Z) - Diagonalisation SGD: Fast & Convergent SGD for Non-Differentiable Models
via Reparameterisation and Smoothing [1.6114012813668932]
微分不可能な関数を断片的に定義するための単純なフレームワークを導入し,スムース化を得るための体系的なアプローチを提案する。
我々の主な貢献は SGD の新たな変種 Diagonalisation Gradient Descent であり、滑らかな近似の精度を徐々に向上させる。
我々のアプローチは単純で高速で安定であり、作業正規化分散の桁数削減を実現している。
論文 参考訳(メタデータ) (2024-02-19T00:43:22Z) - Doubly Stochastic Models: Learning with Unbiased Label Noises and
Inference Stability [85.1044381834036]
勾配降下のミニバッチサンプリング設定におけるラベル雑音の暗黙的正則化効果について検討した。
そのような暗黙的正則化器は、パラメータの摂動に対してモデル出力を安定化できる収束点を好んでいる。
我々の研究は、SGDをオルンシュタイン-ウレンベック類似の過程とはみなせず、近似の収束によってより一般的な結果を得る。
論文 参考訳(メタデータ) (2023-04-01T14:09:07Z) - Clipped Stochastic Methods for Variational Inequalities with
Heavy-Tailed Noise [64.85879194013407]
単調なVIPと非単調なVIPの解法における信頼度に対数的依存を持つ最初の高確率結果が証明された。
この結果は光尾の場合で最もよく知られたものと一致し,非単調な構造問題に新鮮である。
さらに,多くの実用的な定式化の勾配雑音が重く,クリッピングによりSEG/SGDAの性能が向上することを示す。
論文 参考訳(メタデータ) (2022-06-02T15:21:55Z) - Computing the Variance of Shuffling Stochastic Gradient Algorithms via
Power Spectral Density Analysis [6.497816402045099]
理論上の利点を持つ勾配降下(SGD)の2つの一般的な選択肢は、ランダムリシャッフル(SGDRR)とシャッフルオンス(SGD-SO)である。
本研究では,SGD,SGDRR,SGD-SOの定常変動について検討した。
論文 参考訳(メタデータ) (2022-06-01T17:08:04Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
勾配降下(SGD)により最適化された高次元におけるランダム特徴(RF)回帰特性について検討する。
本研究では, RF回帰の高精度な非漸近誤差境界を, 定常および適応的なステップサイズSGD設定の下で導出する。
理論的にも経験的にも二重降下現象を観察する。
論文 参考訳(メタデータ) (2021-10-13T17:47:39Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient
Clipping [69.9674326582747]
そこで本研究では,重み付き分散雑音を用いたスムーズな凸最適化のための,クリップ付きSSTMと呼ばれる新しい1次高速化手法を提案する。
この場合、最先端の結果を上回る新たな複雑さが証明される。
本研究は,SGDにおいて,ノイズに対する光細かな仮定を伴わずにクリッピングを施した最初の非自明な高確率複雑性境界を導出した。
論文 参考訳(メタデータ) (2020-05-21T17:05:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。