論文の概要: Model Reduction and Neural Networks for Parametric PDEs
- arxiv url: http://arxiv.org/abs/2005.03180v2
- Date: Thu, 17 Jun 2021 18:45:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 22:58:17.022465
- Title: Model Reduction and Neural Networks for Parametric PDEs
- Title(参考訳): パラメトリックPDEのためのモデル削減とニューラルネットワーク
- Authors: Kaushik Bhattacharya, Bamdad Hosseini, Nikola B. Kovachki, Andrew M.
Stuart
- Abstract要約: 無限次元空間間の入出力マップをデータ駆動で近似するフレームワークを開発した。
提案されたアプローチは、最近のニューラルネットワークとディープラーニングの成功に動機づけられている。
入力出力マップのクラスと、入力に対する適切な選択された確率測度について、提案手法の収束性を証明する。
- 参考スコア(独自算出の注目度): 9.405458160620533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a general framework for data-driven approximation of input-output
maps between infinite-dimensional spaces. The proposed approach is motivated by
the recent successes of neural networks and deep learning, in combination with
ideas from model reduction. This combination results in a neural network
approximation which, in principle, is defined on infinite-dimensional spaces
and, in practice, is robust to the dimension of finite-dimensional
approximations of these spaces required for computation. For a class of
input-output maps, and suitably chosen probability measures on the inputs, we
prove convergence of the proposed approximation methodology. We also include
numerical experiments which demonstrate the effectiveness of the method,
showing convergence and robustness of the approximation scheme with respect to
the size of the discretization, and compare it with existing algorithms from
the literature; our examples include the mapping from coefficient to solution
in a divergence form elliptic partial differential equation (PDE) problem, and
the solution operator for viscous Burgers' equation.
- Abstract(参考訳): 無限次元空間間の入出力マップをデータ駆動で近似するための一般的なフレームワークを開発する。
提案されたアプローチは、ニューラルネットワークとディープラーニングの最近の成功と、モデル削減のアイデアの組み合わせによって動機付けられたものだ。
この組み合わせは、原則として無限次元空間上で定義され、実際には計算に必要な空間の有限次元近似の次元に対して堅牢であるニューラルネットワーク近似をもたらす。
入力出力マップのクラスと、入力に対する適切な選択された確率測度について、提案手法の収束性を証明する。
また,本手法の有効性を実証し,離散化の大きさに対する近似スキームの収束性や頑健性を示す数値実験や,分散型楕円偏微分方程式(PDE)問題における係数から解への写像,粘性バーガース方程式の解演算子など,文献からの既存アルゴリズムとの比較を行った。
関連論文リスト
- Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - Approximation of Solution Operators for High-dimensional PDEs [2.3076986663832044]
進化的偏微分方程式の解演算子を近似する有限次元制御法を提案する。
結果は、ハミルトン・ヤコビ・ベルマン方程式を解くための実世界の応用を含む、いくつかの高次元PDEに対して提示される。
論文 参考訳(メタデータ) (2024-01-18T21:45:09Z) - Probabilistic partition of unity networks for high-dimensional
regression problems [1.0227479910430863]
我々は高次元回帰問題におけるユニタリネットワーク(PPOU-Net)モデルの分割について検討する。
本稿では適応次元の減少に着目した一般的な枠組みを提案する。
PPOU-Netsは、数値実験において、同等の大きさのベースライン完全接続ニューラルネットワークを一貫して上回っている。
論文 参考訳(メタデータ) (2022-10-06T06:01:36Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
フィルタ方程式は、数値天気予報、金融、工学など、多くの現実の応用において中心的な役割を果たす。
フィルタリング方程式の解を近似する古典的なアプローチの1つは、分割法と呼ばれるPDEにインスパイアされた方法を使うことである。
我々はこの手法をニューラルネットワーク表現と組み合わせて、信号プロセスの非正規化条件分布の近似を生成する。
論文 参考訳(メタデータ) (2022-01-10T11:01:36Z) - DiffNet: Neural Field Solutions of Parametric Partial Differential
Equations [30.80582606420882]
我々は、ニューラルネットワークをトレーニングし、PDEに対するソリューションのフィールド予測を生成するメッシュベースのアプローチを検討する。
パラメトリック楕円PDE上の有限要素法(FEM)に基づく重み付きガレルキン損失関数を用いる。
PDE に対する有限要素解に展開されたメッシュ収束解析に類似した,理論的に検証し,実験により考察する。
論文 参考訳(メタデータ) (2021-10-04T17:59:18Z) - A Deep Learning approach to Reduced Order Modelling of Parameter
Dependent Partial Differential Equations [0.2148535041822524]
パラメーター対解写像の効率的な近似法として,Deep Neural Networks に基づく構築的アプローチを開発した。
特に, パラメタライズド・アドベクション拡散PDEについて検討し, 強輸送場の存在下で方法論を検証した。
論文 参考訳(メタデータ) (2021-03-10T17:01:42Z) - Partition-based formulations for mixed-integer optimization of trained
ReLU neural networks [66.88252321870085]
本稿では,訓練されたReLUニューラルネットワークのための混合整数式について紹介する。
1つの極端な場合、入力毎に1つのパーティションがノードの凸殻、すなわち各ノードの最も厳密な可能な定式化を回復する。
論文 参考訳(メタデータ) (2021-02-08T17:27:34Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
ヒルベルト空間の既知の低次元部分空間を探索することにより、確率観測の集合を用いて近似解を計算する手法を検討する。
本稿では,線形関数近似を用いた政策評価問題に対する時間差分学習手法の誤差を正確に評価する方法について述べる。
論文 参考訳(メタデータ) (2020-12-09T20:19:32Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
変分法による離散的グラフィカルモデルの推論は困難である。
エビデンス・ロウアーバウンド(ELBO)を推定するためのサンプリングに基づく多くの手法が提案されている。
Sum Product Networks (SPN) のような確率的回路モデルのトラクタビリティを活用する新しい手法を提案する。
選択的SPNが表現的変動分布として適していることを示し、対象モデルの対数密度が重み付けされた場合、対応するELBOを解析的に計算可能であることを示す。
論文 参考訳(メタデータ) (2020-10-22T05:04:38Z) - The Random Feature Model for Input-Output Maps between Banach Spaces [6.282068591820945]
ランダム特徴モデルは、カーネルまたは回帰法に対するパラメトリック近似である。
本稿では、入力バナッハ空間を出力バナッハ空間にマッピングする演算子のためのデータ駆動サロゲートとしてランダム特徴モデルを使用する手法を提案する。
論文 参考訳(メタデータ) (2020-05-20T17:41:40Z) - Neural Operator: Graph Kernel Network for Partial Differential Equations [57.90284928158383]
この作業はニューラルネットワークを一般化し、無限次元空間(演算子)間の写像を学習できるようにすることである。
非線形活性化関数と積分作用素のクラスを構成することにより、無限次元写像の近似を定式化する。
実験により,提案したグラフカーネルネットワークには所望の特性があり,最先端技術と比較した場合の競合性能を示すことが確認された。
論文 参考訳(メタデータ) (2020-03-07T01:56:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。