論文の概要: Deep Learning Based Sphere Decoding
- arxiv url: http://arxiv.org/abs/1807.03162v2
- Date: Mon, 25 Mar 2024 14:13:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 22:28:24.802469
- Title: Deep Learning Based Sphere Decoding
- Title(参考訳): 深層学習に基づく球デコーディング
- Authors: Mostafa Mohammadkarimi, Mehrtash Mehrabi, Masoud Ardakani, Yindi Jing,
- Abstract要約: 深層ニューラルネットワーク(DNN)により,超球面の半径を学習する深層学習(DL)に基づく球面復号アルゴリズムを提案する。
提案アルゴリズムによって達成された性能は、幅広い信号-雑音比(SNR)に対して最適極大復号法(MLD)に非常に近い。
計算複雑性は、既存の球デコード変種と比較して大幅に減少している。
- 参考スコア(独自算出の注目度): 15.810396655155975
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this paper, a deep learning (DL)-based sphere decoding algorithm is proposed, where the radius of the decoding hypersphere is learned by a deep neural network (DNN). The performance achieved by the proposed algorithm is very close to the optimal maximum likelihood decoding (MLD) over a wide range of signal-to-noise ratios (SNRs), while the computational complexity, compared to existing sphere decoding variants, is significantly reduced. This improvement is attributed to DNN's ability of intelligently learning the radius of the hypersphere used in decoding. The expected complexity of the proposed DL-based algorithm is analytically derived and compared with existing ones. It is shown that the number of lattice points inside the decoding hypersphere drastically reduces in the DL-based algorithm in both the average and worst-case senses. The effectiveness of the proposed algorithm is shown through simulation for high-dimensional multiple-input multiple-output (MIMO) systems, using high-order modulations.
- Abstract(参考訳): 本稿では,深層ニューラルネットワーク(DNN)を用いて,超球面の半径を学習する深層学習(DL)に基づく球面復号アルゴリズムを提案する。
提案アルゴリズムによって達成された性能は、幅広い信号-雑音比(SNR)に対して最適極大復号法(MLD)に非常に近いが、計算複雑性は既存の球復号法と比較して著しく低下する。
この改善は、DNNがデコードに使用するハイパースフィアの半径をインテリジェントに学習する能力に起因している。
提案するDLアルゴリズムの複雑さは,既存のアルゴリズムと比較して解析的に導出され,比較される。
その結果,デコードハイパースフィア内の格子点の数は,平均値と最悪の値の両方でDLベースのアルゴリズムで大幅に減少することがわかった。
提案アルゴリズムの有効性は,高次変調を用いた高次元マルチインプット多重出力(MIMO)システムのシミュレーションにより示される。
関連論文リスト
- Deep Convolutional Neural Networks Meet Variational Shape Compactness Priors for Image Segmentation [7.314877483509877]
形状コンパクト性は、多くの画像分割タスクにおいて興味深い領域を記述するための重要な幾何学的性質である。
そこで本稿では,従来の形状特徴を取り入れた画像分割問題を解くために,新しい2つのアルゴリズムを提案する。
提案アルゴリズムは、ノイズの多い画像データセット上で20%のトレーニングをすることで、IoUを大幅に改善する。
論文 参考訳(メタデータ) (2024-05-23T11:05:35Z) - Deep Unrolling for Nonconvex Robust Principal Component Analysis [75.32013242448151]
我々はロバスト成分分析のためのアルゴリズムを設計する(A)
行列を低主行列とスパース主行列の和に分解する。
論文 参考訳(メタデータ) (2023-07-12T03:48:26Z) - Deep learning numerical methods for high-dimensional fully nonlinear
PIDEs and coupled FBSDEs with jumps [26.28912742740653]
高次元放物型積分微分方程式(PIDE)を解くためのディープラーニングアルゴリズムを提案する。
ジャンプ拡散過程はブラウン運動と独立補償ポアソンランダム測度によって導出される。
この深層学習アルゴリズムの誤差推定を導出するために,マルコビアンの収束,オイラー時間離散化の誤差境界,および深層学習アルゴリズムのシミュレーション誤差について検討した。
論文 参考訳(メタデータ) (2023-01-30T13:55:42Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Partitioning sparse deep neural networks for scalable training and
inference [8.282177703075453]
最先端のディープニューラルネットワーク(DNN)には、計算とデータ管理の大幅な要件がある。
スパシフィケーション法とプルーニング法は,DNNの大量の接続を除去するのに有効であることが示されている。
その結果得られたスパースネットワークは、ディープラーニングにおけるトレーニングと推論の計算効率をさらに向上するためのユニークな課題を提示する。
論文 参考訳(メタデータ) (2021-04-23T20:05:52Z) - Joint Deep Reinforcement Learning and Unfolding: Beam Selection and
Precoding for mmWave Multiuser MIMO with Lens Arrays [54.43962058166702]
離散レンズアレイを用いたミリ波マルチユーザマルチインプット多重出力(MU-MIMO)システムに注目が集まっている。
本研究では、DLA を用いた mmWave MU-MIMO システムのビームプリコーディング行列の共同設計について検討する。
論文 参考訳(メタデータ) (2021-01-05T03:55:04Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
疎信号回復問題に対するエンドツーエンドの訓練可能なディープラーニングアーキテクチャを提案する。
提案手法は,出力するレイヤ数を学習し,各タスクのネットワーク深さを推論フェーズで動的に調整する。
論文 参考訳(メタデータ) (2020-10-29T06:32:53Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z) - A PDD Decoder for Binary Linear Codes With Neural Check Polytope
Projection [43.97522161614078]
基本ポリトープに基づく最大可算(ML)復号問題に対処するPDDアルゴリズムを提案する。
また、PDD復号アルゴリズムの最も時間を要する部分に機械学習技術を統合することを提案する。
本稿では、デコード遅延を低減するために特別に設計されたニューラルCPP(N CPP)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-11T07:57:15Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。