論文の概要: A Large-scale Multimodal Study for Predicting Mortality Risk Using Minimal and Low Parameter Models and Separable Risk Assessment
- arxiv url: http://arxiv.org/abs/1901.08125v2
- Date: Tue, 29 Apr 2025 18:43:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-11 13:32:07.55425
- Title: A Large-scale Multimodal Study for Predicting Mortality Risk Using Minimal and Low Parameter Models and Separable Risk Assessment
- Title(参考訳): 最小パラメータモデルと低パラメータモデルを用いたリスク予測のための大規模マルチモーダル研究
- Authors: Alvaro E. Ulloa Cerna, Marios Pattichis, David P. vanMaanen, Linyuan Jing, Aalpen A. Patel, Joshua V. Stough, Christopher M. Haggerty, Brandon K. Fornwalt,
- Abstract要約: 我々は,大規模臨床データセットに基づいて1年間の死亡を予測できる複数のマルチモーダルモデルを開発し,検証する。
1年間の死亡予測に焦点をあてることで、患者に緊急感を与えることができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The majority of biomedical studies use limited datasets that may not generalize over large heterogeneous datasets that have been collected over several decades. The current paper develops and validates several multimodal models that can predict 1-year mortality based on a massive clinical dataset. Our focus on predicting 1-year mortality can provide a sense of urgency to the patients. Using the largest dataset of its kind, the paper considers the development and validation of multimodal models based on 25,137,015 videos associated with 699,822 echocardiography studies from 316,125 patients, and 2,922,990 8-lead electrocardiogram (ECG) traces from 631,353 patients. Our models allow us to assess the contribution of individual factors and modalities to the overall risk. Our approach allows us to develop extremely low-parameter models that use optimized feature selection based on feature importance. Based on available clinical information, we construct a family of models that are made available in the DISIML package. Overall, performance ranges from an AUC of 0.72 with just ten parameters to an AUC of 0.89 with under 105k for the full multimodal model. The proposed approach represents a modular neural network framework that can provide insights into global risk trends and guide therapies for reducing mortality risk.
- Abstract(参考訳): バイオメディカル研究の大半は、数十年にわたって収集された巨大な異種データセットを一般化しない限られたデータセットを使用している。
本論文は, 大規模臨床データセットに基づいて, 1年間の死亡を予測できる複数のマルチモーダルモデルを開発し, 検証する。
1年間の死亡予測に焦点をあてることで、患者に緊急感を与えることができる。
本研究は,316,125例,2,922,990例の心電図(ECG)を用いて,25,137,015ビデオと699,822例の心エコー画像を用いたマルチモーダルモデルの開発と妥当性について検討した。
私たちのモデルでは、リスク全体に対する個々の要因とモダリティの貢献を評価することができます。
提案手法により,特徴重要度に基づいた最適化された特徴選択を用いた極低パラメータモデルの開発が可能となる。
利用可能な臨床情報に基づいて,disIMLパッケージで利用可能なモデル群を構築した。
全体的な性能は、たった10パラメータのAUC 0.72から、完全なマルチモーダルモデルで105k未満のAUC 0.89まで様々である。
提案するアプローチは,グローバルリスクトレンドに関する洞察を提供し,死亡リスクを低減するための治療法をガイドする,モジュール型ニューラルネットワークフレームワークである。
関連論文リスト
- Machine Learning-Based Model for Postoperative Stroke Prediction in Coronary Artery Disease [0.0]
本研究では,術後脳卒中リスクを評価するための高度な機械学習予測モデルを開発し,評価することを目的とする。
データセットには70%のトレーニングと30%のテストがあり、数値は正規化され、カテゴリ変数は1ホットエンコードされた。
ロジスティック回帰、XGBoost、SVM、CatBoostは予測モデルに使われ、SHAP分析は各変数のストロークリスクを評価した。
論文 参考訳(メタデータ) (2025-03-15T02:50:32Z) - A multimodal ensemble approach for clear cell renal cell carcinoma treatment outcome prediction [6.199310532720352]
臨床データ,マルチオミクスデータ,および病理組織学的全スライド画像(WSI)データを統合するマルチモーダルアンサンブルモデル(MMEM)を開発した。
MMEMはccRCC患者の全身生存率(OS)と無病生存率(DFS)を予測した。
論文 参考訳(メタデータ) (2024-12-10T02:51:14Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
オープンソースの小型マルチモーダルモデル(SMM)を訓練し、放射線学における未測定臨床ニーズに対する能力ギャップを埋める。
トレーニングのために,697万以上の画像テキストペアからなる大規模なデータセットを組み立てる。
評価のために,GPT-4に基づく実測値CheXpromptを提案する。
LlaVA-Radの推論は高速で、単一のV100 GPU上でプライベート設定で実行できる。
論文 参考訳(メタデータ) (2024-03-12T18:12:02Z) - MixEHR-SurG: a joint proportional hazard and guided topic model for inferring mortality-associated topics from electronic health records [18.87817671852005]
ヘテロジニアスEHRデータとモデル生存ハザードを同時に統合するために、MixEHR-SurGと呼ばれる教師付きトピックモデルを提案する。
これにより、患者死亡に関連するPheCode固有の表現型トピックを推測できる、高度に解釈可能なサバイバルトピックモデルが導かれる。
論文 参考訳(メタデータ) (2023-12-20T22:13:45Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
肺がんは世界中のがん死亡の原因であり、効果的な治療法を設計するための死亡リスクを理解することの重要性を強調している。
NLST(National Lung Screening Trial)は、肺がん患者の死亡リスクを定量化するために、CTテクスチャ解析を用いている。
本稿では,SCADペナルティを組み込んで重要なテクスチャ特徴を抽出し,深層ニューラルネットワークを用いてモデルの非パラメトリック成分を推定する,Pentalized Deep partially Linear Cox Model (Penalized DPLC)を提案する。
論文 参考訳(メタデータ) (2023-03-09T15:38:16Z) - Developing and validating multi-modal models for mortality prediction in
COVID-19 patients: a multi-center retrospective study [1.5308395762165423]
マルチセンター患者データを用いて、新型コロナウイルス死亡予測のためのマルチモーダルモデルの開発と検証を行った。
私たちのゴールは、調査員や組織が予測、分類、最適化のためのマルチモーダルモデルを構築するのを支援するツールキットを作ることです。
論文 参考訳(メタデータ) (2021-09-01T04:46:27Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
ニューラル常微分方程式を多状態生存モデル推定のためのフレキシブルで一般的な方法として用いる。
また,本モデルでは,サバイバルデータセット上での最先端性能を示すとともに,マルチステート環境での有効性を示す。
論文 参考訳(メタデータ) (2020-06-08T19:24:54Z) - Interpretable Machine Learning Model for Early Prediction of Mortality
in Elderly Patients with Multiple Organ Dysfunction Syndrome (MODS): a
Multicenter Retrospective Study and Cross Validation [9.808639780672156]
MODS患者は死亡リスクが高く予後不良である。
本研究は,MODS高齢者の早期死亡予測のための解釈可能・一般化可能なモデルを開発することを目的とする。
論文 参考訳(メタデータ) (2020-01-28T17:15:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。