論文の概要: Explainable artificial intelligence model predicting the risk of all-cause mortality in patients with type 2 diabetes mellitus
- arxiv url: http://arxiv.org/abs/2507.23491v1
- Date: Thu, 31 Jul 2025 12:23:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-01 17:19:09.732312
- Title: Explainable artificial intelligence model predicting the risk of all-cause mortality in patients with type 2 diabetes mellitus
- Title(参考訳): 2型糖尿病患者の死亡リスクを予測する説明可能な人工知能モデル
- Authors: Olga Vershinina, Jacopo Sabbatinelli, Anna Rita Bonfigli, Dalila Colombaretti, Angelica Giuliani, Mikhail Krivonosov, Arseniy Trukhanov, Claudio Franceschi, Mikhail Ivanchenko, Fabiola Olivieri,
- Abstract要約: 本研究は, T2DMと診断された554例(40~87歳)の経過観察を行った。
主要な生存関連の特徴が同定され、複数の機械学習(ML)モデルがトレーニングされ、すべての原因による死亡リスクを予測するために検証された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Objective. Type 2 diabetes mellitus (T2DM) is a highly prevalent non-communicable chronic disease that substantially reduces life expectancy. Accurate estimation of all-cause mortality risk in T2DM patients is crucial for personalizing and optimizing treatment strategies. Research Design and Methods. This study analyzed a cohort of 554 patients (aged 40-87 years) with diagnosed T2DM over a maximum follow-up period of 16.8 years, during which 202 patients (36%) died. Key survival-associated features were identified, and multiple machine learning (ML) models were trained and validated to predict all-cause mortality risk. To improve model interpretability, Shapley additive explanations (SHAP) was applied to the best-performing model. Results. The extra survival trees (EST) model, incorporating ten key features, demonstrated the best predictive performance. The model achieved a C-statistic of 0.776, with the area under the receiver operating characteristic curve (AUC) values of 0.86, 0.80, 0.841, and 0.826 for 5-, 10-, 15-, and 16.8-year all-cause mortality predictions, respectively. The SHAP approach was employed to interpret the model's individual decision-making processes. Conclusions. The developed model exhibited strong predictive performance for mortality risk assessment. Its clinically interpretable outputs enable potential bedside application, improving the identification of high-risk patients and supporting timely treatment optimization.
- Abstract(参考訳): 目的。
2型糖尿病(2型糖尿病、T2DM)は、寿命を著しく減少させる非免疫性慢性疾患である。
T2DM患者の死亡リスクの正確な推定は、治療戦略のパーソナライズと最適化に不可欠である。
設計と方法。
本研究は, T2DMと診断された554例(40~87歳)を16.8年間の経過観察を行い, その間に202例(36%)が死亡した。
主要な生存関連の特徴が同定され、複数の機械学習(ML)モデルがトレーニングされ、すべての原因による死亡リスクを予測するために検証された。
モデル解釈性を改善するため,Shapley additive explanations (SHAP) を最適性能モデルに適用した。
結果。
エクストラサバイバルツリー(EST)モデルは10つの重要な特徴を取り入れ、最高の予測性能を示した。
このモデルは、受信機動作特性曲線(AUC)の0.86、0.80、0.841、0.826の5年、10年、15年、および16.8年というC統計値を得た。
SHAPアプローチは、モデルの個々の意思決定プロセスを理解するために採用された。
結論。
開発したモデルでは, 死亡リスク評価のための高い予測性能を示した。
臨床的に解釈可能なアウトプットは、ベッドサイドの潜在的な応用を可能にし、リスクの高い患者の識別を改善し、タイムリーな治療最適化をサポートする。
関連論文リスト
- Early Mortality Prediction in ICU Patients with Hypertensive Kidney Disease Using Interpretable Machine Learning [3.4335475695580127]
集中治療室(ICUs)の高血圧性腎疾患(HKD)患者は短期的死亡率が高い。
我々は,HKDのICU患者に対して,30日間の院内死亡を予測できる機械学習フレームワークを開発した。
論文 参考訳(メタデータ) (2025-07-25T00:48:23Z) - A Transformer-based survival model for prediction of all-cause mortality in heart failure patients: a multi-cohort study [5.831730826863567]
心不全患者の36カ月の死亡を予測できるトランスフォーマーベースのAIモデルであるTRiskを開発した。
英国では1,418例の心不全403,534例(40~90歳)について検討した。
論文 参考訳(メタデータ) (2025-03-16T01:53:50Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis、ALS)は、急速に進行する神経変性疾患である。
iDPP@CLEF 2024チャレンジを先導した今回の調査は,アプリから得られるセンサデータを活用することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-10T19:17:23Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
肺がんは世界中のがん死亡の原因であり、効果的な治療法を設計するための死亡リスクを理解することの重要性を強調している。
NLST(National Lung Screening Trial)は、肺がん患者の死亡リスクを定量化するために、CTテクスチャ解析を用いている。
本稿では,SCADペナルティを組み込んで重要なテクスチャ特徴を抽出し,深層ニューラルネットワークを用いてモデルの非パラメトリック成分を推定する,Pentalized Deep partially Linear Cox Model (Penalized DPLC)を提案する。
論文 参考訳(メタデータ) (2023-03-09T15:38:16Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
本稿では,不規則なサンプルデータの下で潜在表現をパラメータ化する生成時間対イベントモデルSurvLatent ODEを提案する。
そこで,本モデルでは,事象特異的ハザード関数の形状を指定せずに,複数の競合イベントの生存時間を柔軟に推定する。
SurvLatent ODEは、DVTリスクグループを成層化するために、現在の臨床標準であるKhorana Riskスコアより優れている。
論文 参考訳(メタデータ) (2022-04-20T17:28:08Z) - On the explainability of hospitalization prediction on a large COVID-19
patient dataset [45.82374977939355]
我々は、新型コロナウイルス陽性の米国の患者の大規模な(110ドル以上)コホートでの入院を予測するために、さまざまなAIモデルを開発した。
高いデータアンバランスにもかかわらず、モデルは平均精度0.96-0.98 (0.75-0.85)、リコール0.96-0.98 (0.74-0.85)、F_score097-0.98 (0.79-0.83)に達する。
論文 参考訳(メタデータ) (2021-10-28T10:23:38Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - A Physiology-Driven Computational Model for Post-Cardiac Arrest Outcome
Prediction [0.7930054475711718]
本研究の目的は,CA後の結果を予測する計算モデルを構築することである。
我々は、生理的時系列(PTS)データの統合と機械学習(ML)分類器の訓練によりモデル性能を向上させることができると仮定した。
その結果, MLモデルによるCA後予測モデルの有効性が証明され, PTSが短期成績確率を符号化した後のごく初期段階に記録されることが示唆された。
論文 参考訳(メタデータ) (2020-02-09T07:53:50Z) - Interpretable Machine Learning Model for Early Prediction of Mortality
in Elderly Patients with Multiple Organ Dysfunction Syndrome (MODS): a
Multicenter Retrospective Study and Cross Validation [9.808639780672156]
MODS患者は死亡リスクが高く予後不良である。
本研究は,MODS高齢者の早期死亡予測のための解釈可能・一般化可能なモデルを開発することを目的とする。
論文 参考訳(メタデータ) (2020-01-28T17:15:34Z) - A Large-scale Multimodal Study for Predicting Mortality Risk Using Minimal and Low Parameter Models and Separable Risk Assessment [0.0]
我々は,大規模臨床データセットに基づいて1年間の死亡を予測できる複数のマルチモーダルモデルを開発し,検証する。
1年間の死亡予測に焦点をあてることで、患者に緊急感を与えることができる。
論文 参考訳(メタデータ) (2019-01-23T20:47:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。