Defect-free assembly of 2D clusters of more than 100 single-atom quantum
systems
- URL: http://arxiv.org/abs/1902.00284v5
- Date: Tue, 9 May 2023 09:38:33 GMT
- Title: Defect-free assembly of 2D clusters of more than 100 single-atom quantum
systems
- Authors: Daniel Ohl de Mello, Dominik Sch\"affner, Jan Werkmann, Tilman
Preuschoff, Lars Kohfahl, Malte Schlosser, Gerhard Birkl
- Abstract summary: We build on a micro-optical architecture that provides thousands of sites for single-atom quantum systems.
We implement repeated target pattern reconstruction after atom loss and deterministic transport of partial atom clusters.
This technique will propel assembled-atom architectures beyond the threshold of quantum advantage.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate the defect-free assembly of versatile target patterns of up
111 neutral atoms, building on a 361-site subset of a micro-optical
architecture that readily provides thousands of sites for single-atom quantum
systems. By performing multiple assembly cycles in rapid succession, we
drastically increase achievable structure sizes and success probabilities. We
implement repeated target pattern reconstruction after atom loss and
deterministic transport of partial atom clusters necessary for distributing
entanglement in large-scale systems. This technique will propel assembled-atom
architectures beyond the threshold of quantum advantage and into a regime with
abundant applications in quantum sensing and metrology, Rydberg-state mediated
quantum simulation, and error-corrected quantum computation.
Related papers
- Quantum walks and entanglement in cavity networks [0.0]
We analyze the quantum properties of multipartite quantum systems, consisting of an arbitrarily large collection of optical cavities with two-level atoms.
We explore quantum walks in such systems and determine the resulting entanglement.
The topology of torus and the non-orientable M"obius strip serve as examples of complex networks we consider.
arXiv Detail & Related papers (2024-04-17T12:46:21Z) - Supercharged two-dimensional tweezer array with more than 1000 atomic
qubits [0.0]
Supercharging one array designated as quantum processing unit with atoms from the secondary array significantly increases the number of qubits and the initial filling fraction.
This drastically enlarges attainable qubit cluster sizes and success probabilities.
The presented method substantiates neutral atom quantum information science by facilitating geometries of highly scalable quantum registers.
arXiv Detail & Related papers (2023-10-13T15:31:42Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Simulating large-size quantum spin chains on cloud-based superconducting
quantum computers [0.46040036610482665]
We report on cloud simulations performed on several of IBM's superconducting quantum computers.
We find that the ground-state energies extracted from realizations reach the expected values to within errors that are small.
By using a 102-qubit system, we have been able to successfully apply up to 3186 CNOT gates in a single circuit.
arXiv Detail & Related papers (2022-07-20T15:55:29Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Location qubits in a multi-quantum-dot system [0.0]
We introduce novel location qubits, describe a method to construct a universal set of all-optical quantum gates, and simulate their performance in realistic structures.
Our results show that location qubits can maintain coherence 5 orders of magnitude longer than single-qubit operation time, and single-qubit gate errors do not exceed 0.01%.
arXiv Detail & Related papers (2021-07-13T10:00:16Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Creating and destroying coherence with quantum channels [62.997667081978825]
We study optimal ways to create a large amount of quantum coherence via quantum channels.
correlations in multipartite systems do not enhance the ability of a quantum channel to create coherence.
We show that a channel can destroy more coherence when acting on a subsystem of a bipartite state.
arXiv Detail & Related papers (2021-05-25T16:44:13Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Quantum simulation and computing with Rydberg-interacting qubits [0.0]
We give an overview of the Rydberg quantum toolbox, emphasizing the high degree of flexibility for encoding qubits.
We then review the state-of-the-art concerning high-fidelity quantum operations and logic gates.
We discuss computing schemes that are particularly suited to the Rydberg platform.
arXiv Detail & Related papers (2020-11-05T18:44:11Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.