論文の概要: Boltzmann machine learning and regularization methods for inferring evolutionary fields and couplings from a multiple sequence alignment
- arxiv url: http://arxiv.org/abs/1909.05006v5
- Date: Sun, 21 Jul 2024 09:39:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 06:25:22.967762
- Title: Boltzmann machine learning and regularization methods for inferring evolutionary fields and couplings from a multiple sequence alignment
- Title(参考訳): ボルツマン機械学習と多列アライメントから進化場とカップリングを推定するための正規化法
- Authors: Sanzo Miyazawa,
- Abstract要約: ボルツマン機械学習における相互作用を推論するための正規化と学習法について検討する。
2つの正規化パラメータは、進化エネルギーのサンプル平均とアンサンブル平均の両方に等しい値を与えるように調整される。
アダム法はスパース結合の勾配に比例したステップ化をするために修正される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The inverse Potts problem to infer a Boltzmann distribution for homologous protein sequences from their single-site and pairwise amino acid frequencies recently attracts a great deal of attention in the studies of protein structure and evolution. We study regularization and learning methods and how to tune regularization parameters to correctly infer interactions in Boltzmann machine learning. Using $L_2$ regularization for fields, group $L_1$ for couplings is shown to be very effective for sparse couplings in comparison with $L_2$ and $L_1$. Two regularization parameters are tuned to yield equal values for both the sample and ensemble averages of evolutionary energy. Both averages smoothly change and converge, but their learning profiles are very different between learning methods. The Adam method is modified to make stepsize proportional to the gradient for sparse couplings. It is shown by first inferring interactions from protein sequences and then from Monte Carlo samples that the fields and couplings can be well recovered, but that recovering the pairwise correlations in the resolution of a total energy is harder for the natural proteins than for the protein-like sequences. Selective temperature for folding/structural constrains in protein evolution is also estimated.
- Abstract(参考訳): 相同性タンパク質配列のボルツマン分布をその一部位と一対のアミノ酸頻度から推定する逆ポッツ問題は最近、タンパク質の構造と進化の研究において大きな注目を集めている。
ボルツマン機械学習における正則化と学習法と、正則化パラメータを調整して相互作用を正しく推論する方法について検討する。
体に対する$L_2$正規化を用いて、結合に対する群$L_1$は、$L_2$と$L_1$と比較して疎結合に対して非常に有効であることが示されている。
2つの正規化パラメータは、進化エネルギーのサンプル平均とアンサンブル平均の両方に対して等しい値を得るように調整される。
どちらの平均も円滑に変化し、収束するが、その学習プロファイルは学習方法とは大きく異なる。
アダム法はスパース結合の勾配に比例したステップ化をするために修正される。
タンパク質配列とモンテカルロからの最初の相互作用を推測することにより、フィールドとカップリングは十分に回復できるが、全エネルギーの分解における対相関の回復は、タンパク質のような配列よりも自然タンパク質にとって難しいことが示される。
タンパク質の進化における折りたたみ・構造的制約の選択的温度も推定した。
関連論文リスト
- Learning to Predict Mutation Effects of Protein-Protein Interactions by Microenvironment-aware Hierarchical Prompt Learning [78.38442423223832]
我々は、新しいコードブック事前学習タスク、すなわちマスク付きマイクロ環境モデリングを開発する。
突然変異効果予測において、最先端の事前学習法よりも優れた性能と訓練効率を示す。
論文 参考訳(メタデータ) (2024-05-16T03:53:21Z) - Learning general Gaussian mixtures with efficient score matching [16.06356123715737]
我々は、$d$次元で$k$ガウシアンの混合を学習する問題を研究する。
我々は、下層の混合成分について分離を前提としない。
我々は、ターゲット混合物から$dmathrmpoly(k/varepsilon)$サンプルを抽出し、サンプル-ポリノミカル時間で実行し、サンプリング器を構築するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-29T17:30:36Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
近年の研究では、再生カーネルヒルベルト空間(RKHS)がニューラルネットワークによる関数のモデル化に適した空間ではないことが示されている。
本稿では,有界ノルムを持つオーバーパラメータ化された2層ニューラルネットワークに適した関数空間について検討する。
論文 参考訳(メタデータ) (2024-04-29T15:04:07Z) - FABind: Fast and Accurate Protein-Ligand Binding [127.7790493202716]
$mathbfFABind$はポケット予測とドッキングを組み合わせたエンドツーエンドモデルで、正確で高速なタンパク質-リガンド結合を実現する。
提案モデルでは,既存手法と比較して有効性と効率性に強い利点が示される。
論文 参考訳(メタデータ) (2023-10-10T16:39:47Z) - Pairing interacting protein sequences using masked language modeling [0.3222802562733787]
配列アライメントに基づいて訓練されたタンパク質言語モデルを用いて相互作用するタンパク質配列をペア化する手法を開発した。
我々は、MSAトランスフォーマーが、周囲のコンテキストを用いて複数の配列アライメントでマスクされたアミノ酸を埋める能力を利用する。
単一チェーンデータでトレーニングされている間に、チェーン間の共進化をキャプチャできることが示されています。
論文 参考訳(メタデータ) (2023-08-14T13:42:09Z) - Compressed and distributed least-squares regression: convergence rates
with applications to Federated Learning [9.31522898261934]
機械学習の勾配アルゴリズムに対する圧縮の影響について検討する。
いくつかの非バイアス圧縮演算子間の収束率の差を強調した。
我々はその結果を連合学習の事例にまで拡張する。
論文 参考訳(メタデータ) (2023-08-02T18:02:00Z) - Predicting protein variants with equivariant graph neural networks [0.0]
我々は,同変グラフニューラルネットワーク(EGNN)と配列に基づくアプローチによる有望なアミノ酸変異の同定能力の比較を行った。
提案する構造的アプローチは, より少ない分子で訓練しながら, 配列に基づくアプローチと競合する性能を実現する。
論文 参考訳(メタデータ) (2023-06-21T12:44:52Z) - Independent SE(3)-Equivariant Models for End-to-End Rigid Protein
Docking [57.2037357017652]
我々は、剛体タンパク質ドッキング、すなわち、個々の非結合構造からタンパク質-タンパク質複合体の3次元構造を計算的に予測する。
本研究では, タンパク質の回転と翻訳を予測し, 1つのタンパク質をドッキング位置に置くために, ペアワイズ非独立なSE(3)-等変グラフマッチングネットワークを設計する。
我々のモデルはEquiDockと呼ばれ、結合ポケットを近似し、キーポイントマッチングとアライメントを用いてドッキングポーズを予測する。
論文 参考訳(メタデータ) (2021-11-15T18:46:37Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
本研究では,データ駆動型生成ネットワークを用いたタンパク質構造最適化手法を提案する。
EBM-Foldアプローチは,従来のロゼッタ構造最適化ルーチンと比較して,高品質なデコイを効率よく生成できる。
論文 参考訳(メタデータ) (2021-05-11T03:40:29Z) - Intrinsic-Extrinsic Convolution and Pooling for Learning on 3D Protein
Structures [18.961218808251076]
大規模タンパク質データの深部3次元解析を可能にする2つの新しい学習操作を提案する。
まず、内在的(タンパク質の折り畳みの下での不変)と外因的(結合下での不変)の両方を考慮する新しい畳み込み演算子を導入する。
第2に、階層的なプーリング演算子を導入し、タンパク質がアミノ酸の有限組の再結合であるという事実を活用することにより、マルチスケールのタンパク質分析を可能にする。
論文 参考訳(メタデータ) (2020-07-13T09:02:40Z) - Algebraic and Analytic Approaches for Parameter Learning in Mixture
Models [66.96778152993858]
1次元の混合モデルにおけるパラメータ学習のための2つの異なるアプローチを提案する。
これらの分布のいくつかについては、パラメータ推定の最初の保証を示す。
論文 参考訳(メタデータ) (2020-01-19T05:10:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。