論文の概要: Clinical XLNet: Modeling Sequential Clinical Notes and Predicting
Prolonged Mechanical Ventilation
- arxiv url: http://arxiv.org/abs/1912.11975v1
- Date: Fri, 27 Dec 2019 03:40:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-10 00:16:52.051826
- Title: Clinical XLNet: Modeling Sequential Clinical Notes and Predicting
Prolonged Mechanical Ventilation
- Title(参考訳): 臨床XLNet : 逐次臨床ノートのモデル化と機械的換気の長期予測
- Authors: Kexin Huang, Abhishek Singh, Sitong Chen, Edward T. Moseley, Chih-ying
Deng, Naomi George, Charlotta Lindvall
- Abstract要約: 臨床ノートにはリッチデータが含まれており、構造化データと比較して予測モデルでは明らかにされていない。
臨床ノートの時系列情報を利用した新しいテキスト表現臨床XLNetを開発した。
- 参考スコア(独自算出の注目度): 7.31936892138491
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clinical notes contain rich data, which is unexploited in predictive modeling
compared to structured data. In this work, we developed a new text
representation Clinical XLNet for clinical notes which also leverages the
temporal information of the sequence of the notes. We evaluated our models on
prolonged mechanical ventilation prediction problem and our experiments
demonstrated that Clinical XLNet outperforms the best baselines consistently.
- Abstract(参考訳): 臨床ノートにはリッチなデータが含まれており、構造化データと比較して予測モデリングでは説明できない。
そこで本研究では, 臨床ノートの時系列情報を活用し, 臨床ノート用テキスト表現用臨床用xlnetを開発した。
長期の機械的換気予測問題に対する本モデルの評価を行い,臨床XLNetが最良基準線を一貫して上回ることを示した。
関連論文リスト
- Language Model Training Paradigms for Clinical Feature Embeddings [1.4513150969598638]
言語モデルのための自己教師型トレーニングパラダイムを用いて,高品質な臨床機能埋め込みを学習する。
教師なし次元縮小技術を用いて学習者の埋め込みを可視化し,先行臨床知識と高度に整合性を観察する。
論文 参考訳(メタデータ) (2023-11-01T18:23:12Z) - Investigating Alternative Feature Extraction Pipelines For Clinical Note
Phenotyping [0.0]
医療属性の抽出に計算システムを用いると、多くの応用が期待できる。
BERTベースのモデルは、臨床ノートを一連の表現に変換するために使用することができる。
そこで本研究では,ScispaCyNeumannを用いた代替パイプラインを提案する。
論文 参考訳(メタデータ) (2023-10-05T02:51:51Z) - Making the Most Out of the Limited Context Length: Predictive Power
Varies with Clinical Note Type and Note Section [70.37720062263176]
本研究では,高い予測力で区間を解析する枠組みを提案する。
MIMIC-IIIを用いて,(1)看護用音符と退院用音符とでは予測電力分布が異なること,(2)文脈長が大きい場合の音符の組み合わせにより性能が向上することが示唆された。
論文 参考訳(メタデータ) (2023-07-13T20:04:05Z) - Modelling Temporal Document Sequences for Clinical ICD Coding [9.906895077843663]
本稿では,ICD符号化のための病院留置所における臨床ノートの全列にテキストを用いた階層型トランスフォーマーアーキテクチャを提案する。
すべての臨床ノートを使用すると、データ量が大幅に増加するが、超収束はトレーニングコストの削減に利用することができる。
本モデルでは, 放電サマリーのみを入力として使用する場合の先行技術を超え, 全臨床ノートを入力として使用する場合のさらなる性能向上を実現している。
論文 参考訳(メタデータ) (2023-02-24T14:41:48Z) - This Patient Looks Like That Patient: Prototypical Networks for
Interpretable Diagnosis Prediction from Clinical Text [56.32427751440426]
臨床実践においては、そのようなモデルは正確であるだけでなく、医師に解釈可能で有益な結果を与える必要がある。
本稿では,プロトタイプネットワークに基づく新しい手法であるProtoPatientを紹介する。
利用可能な2つの臨床データセット上でモデルを評価し、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-16T10:12:07Z) - A Multimodal Transformer: Fusing Clinical Notes with Structured EHR Data
for Interpretable In-Hospital Mortality Prediction [8.625186194860696]
臨床ノートと構造化HRデータを融合し,院内死亡率の予測に役立てる新しいマルチモーダルトランスフォーマーを提案する。
そこで本研究では,臨床ノートにおいて重要な単語を選択するための統合的勾配(IG)手法を提案する。
また,臨床 BERT における領域適応型事前訓練とタスク適応型微調整の重要性についても検討した。
論文 参考訳(メタデータ) (2022-08-09T03:49:52Z) - Cross-Lingual Knowledge Transfer for Clinical Phenotyping [55.92262310716537]
本稿では,英語を使わないクリニックに対して,このタスクを実行するための言語間知識伝達戦略について検討する。
ギリシャ語とスペイン語のクリニックに対して,異なる臨床領域のクリニカルノートを活用して,これらの戦略を評価する。
以上の結果から,多言語データを用いることで,臨床表現型モデルが改善され,データの疎度を補うことが可能であることが示唆された。
論文 参考訳(メタデータ) (2022-08-03T08:33:21Z) - A Federated Cox Model with Non-Proportional Hazards [8.98624781242271]
最近の研究は、ニューラルネットワークがCoxモデルのような古典的生存モデルを改善する可能性を示している。
本稿では、このデータ設定に適合し、比例的ハザード仮定を緩和するフェデレートされたコックスモデルを提案する。
利用可能な臨床データセットを実験し、フェデレーションモデルが標準モデルと同様に機能できることを実証する。
論文 参考訳(メタデータ) (2022-07-11T17:58:54Z) - Abstractive summarization of hospitalisation histories with transformer
networks [68.96380145211093]
本稿では,患者の入院履歴を抽象的に要約する新しいアプローチを提案する。
我々は、Longformerニューラルネットワークをエンコーダとして、BERTをデコーダとして、エンコーダデコーダフレームワークを適用した。
論文 参考訳(メタデータ) (2022-04-05T13:38:39Z) - What Do You See in this Patient? Behavioral Testing of Clinical NLP
Models [69.09570726777817]
本稿では,入力の変化に関する臨床結果モデルの振る舞いを評価する拡張可能なテストフレームワークを提案する。
私たちは、同じデータを微調整しても、モデル行動は劇的に変化し、最高のパフォーマンスのモデルが常に最も医学的に可能なパターンを学習していないことを示しています。
論文 参考訳(メタデータ) (2021-11-30T15:52:04Z) - An Interpretable End-to-end Fine-tuning Approach for Long Clinical Text [72.62848911347466]
EHRにおける非構造化臨床テキストには、意思決定支援、トライアルマッチング、振り返り研究を含むアプリケーションにとって重要な情報が含まれている。
最近の研究は、これらのモデルが他のNLPドメインにおける最先端の性能を考慮し、BERTベースのモデルを臨床情報抽出およびテキスト分類に応用している。
本稿では,SnipBERTという新しい微調整手法を提案する。SnipBERTは全音符を使用する代わりに,重要なスニペットを識別し,階層的に切り刻まれたBERTベースのモデルに供給する。
論文 参考訳(メタデータ) (2020-11-12T17:14:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。