論文の概要: AutoDiscern: Rating the Quality of Online Health Information with
Hierarchical Encoder Attention-based Neural Networks
- arxiv url: http://arxiv.org/abs/1912.12999v3
- Date: Tue, 26 May 2020 16:01:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-17 01:59:23.715752
- Title: AutoDiscern: Rating the Quality of Online Health Information with
Hierarchical Encoder Attention-based Neural Networks
- Title(参考訳): AutoDiscern:階層型エンコーダによるニューラルネットワークによるオンライン健康情報の品質評価
- Authors: Laura Kinkead, Ahmed Allam, Michael Krauthammer
- Abstract要約: 低品質の健康情報は、誤報の形で患者にリスクを提示し、医師との関係が悪化する可能性がある。
DISCERN基準は、オンライン健康情報の質を評価するために使用される。
機械学習モデルを用いた DISCERN 機器 (Brief バージョン) の自動実装を構築した。
- 参考スコア(独自算出の注目度): 0.6445605125467572
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Patients increasingly turn to search engines and online content before, or in
place of, talking with a health professional. Low quality health information,
which is common on the internet, presents risks to the patient in the form of
misinformation and a possibly poorer relationship with their physician. To
address this, the DISCERN criteria (developed at University of Oxford) are used
to evaluate the quality of online health information. However, patients are
unlikely to take the time to apply these criteria to the health websites they
visit. We built an automated implementation of the DISCERN instrument (Brief
version) using machine learning models. We compared the performance of a
traditional model (Random Forest) with that of a hierarchical encoder
attention-based neural network (HEA) model using two language embeddings, BERT
and BioBERT. The HEA BERT and BioBERT models achieved average F1-macro scores
across all criteria of 0.75 and 0.74, respectively, outperforming the Random
Forest model (average F1-macro = 0.69). Overall, the neural network based
models achieved 81% and 86% average accuracy at 100% and 80% coverage,
respectively, compared to 94% manual rating accuracy. The attention mechanism
implemented in the HEA architectures not only provided 'model explainability'
by identifying reasonable supporting sentences for the documents fulfilling the
Brief DISCERN criteria, but also boosted F1 performance by 0.05 compared to the
same architecture without an attention mechanism. Our research suggests that it
is feasible to automate online health information quality assessment, which is
an important step towards empowering patients to become informed partners in
the healthcare process.
- Abstract(参考訳): 患者は、健康専門家と話をする前に、検索エンジンやオンラインコンテンツに目を向ける傾向にある。
インターネットで一般的に見られる低品質の健康情報は、誤った情報や、医師とのより貧弱な関係という形で患者にリスクをもたらす。
これを解決するために、 disCERN 基準(オックスフォード大学で開発された)は、オンライン健康情報の質を評価するために用いられる。
しかし、患者が訪問する健康ウェブサイトにこれらの基準を適用するのに時間を費やす可能性は低い。
我々は機械学習モデルを用いた識別器(briefバージョン)の自動実装を構築した。
従来のモデル(ランドムフォレスト)と階層型エンコーダアテンションベースニューラルネットワーク(HEA)モデルの性能を,BERTとBioBERTの2つの言語埋め込みを用いて比較した。
HEA BERTとBioBERTは平均F1-macroスコアを0.75と0.74で達成し、ランダムフォレストモデル(平均F1-macro = 0.69)を上回った。
全体として、ニューラルネットワークベースのモデルの平均精度は81%と86%で、それぞれ100%と80%で、手動評価の精度は94%だった。
HEAアーキテクチャで実装されたアテンションメカニズムは、ブリーフディスCERN基準を満たす文書の適切なサポート文を特定することで「モデル説明可能性」を提供するだけでなく、アテンションメカニズムのない同じアーキテクチャと比較してF1性能を0.05向上させた。
本研究は、患者が医療プロセスにおいて情報提供者となるための重要なステップである、オンライン健康情報品質評価の自動化が可能であることを示唆している。
関連論文リスト
- AIPatient: Simulating Patients with EHRs and LLM Powered Agentic Workflow [33.8495939261319]
本稿では,AIPatient Knowledge Graph (AIPatient KG) を入力とし,生成バックボーンとしてReasoning Retrieval-Augmented Generation (RAG) を開発した。
Reasoning RAGは、検索、KGクエリ生成、抽象化、チェッカー、書き直し、要約を含むタスクにまたがる6つのLLMエージェントを活用する。
ANOVA F-value 0.6126, p>0.1, ANOVA F-value 0.782, p>0.1, ANOVA F-value 0.782, p>0.1, ANOVA F-value 0.6126, p>0.1)。
論文 参考訳(メタデータ) (2024-09-27T17:17:15Z) - The Potential of Wearable Sensors for Assessing Patient Acuity in
Intensive Care Unit (ICU) [12.359907390320453]
エクイティアセスメントは、タイムリーな介入と公平なリソース割り当てを提供するために、重要なケア設定において不可欠である。
従来のAcuityスコアには、ICUの回復や劣化を示す、患者のモビリティレベルなどの詳細な情報が含まれていない。
本研究では,手首の加速度計から収集したモビリティデータとEHRから得られた臨床データとを統合してAIによる明度評価スコアを作成することによる影響について検討した。
論文 参考訳(メタデータ) (2023-11-03T21:52:05Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - Accurate Detection of Paroxysmal Atrial Fibrillation with Certified-GAN
and Neural Architecture Search [1.1744028458220426]
発作性心房細動(PxAF)検出のための新しい機械学習フレームワークを提案する。
このフレームワークにはGAN(Generative Adversarial Network)とNAS(Neural Architecture Search)が含まれている。
実験の結果,提案手法の精度は99%と高い値を示した。
論文 参考訳(メタデータ) (2023-01-17T14:04:17Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - A Meta-GNN approach to personalized seizure detection and classification [53.906130332172324]
本稿では,特定の患者に限られた発作サンプルから迅速に適応できるパーソナライズされた発作検出・分類フレームワークを提案する。
トレーニング患者の集合からグローバルモデルを学ぶメタGNNベースの分類器を訓練する。
本手法は, 未確認患者20回に限って, 精度82.7%, F1スコア82.08%を達成し, ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2022-11-01T14:12:58Z) - Real-Time Patient-Specific ECG Classification by 1D Self-Operational
Neural Networks [24.226952040270564]
本稿では,ECG分類のための1D Self-organized Operational Neural Networks (1D Self-ONNs)を提案する。
1D Self-ONNは、演算子セットライブラリ内の前の演算子探索が完全に回避される従来のONNに比べて、最大の優位性と優位性を持つ。
MIT-BIH不整脈ベンチマークデータベースを用いた結果, 1D Self-ONN が 1D CNN をはるかに上回っていることがわかった。
論文 参考訳(メタデータ) (2021-09-30T19:37:36Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
医療コミュニティにおけるこの問題の重要性を示す。
本稿では,変換器 (BERT) モデルによる2方向表現の分類順序の変更について述べる。
約400万人のユニークな患者訪問からなる、大規模なロシアのEHRデータセットを使用します。
論文 参考訳(メタデータ) (2020-07-15T09:22:55Z) - Med7: a transferable clinical natural language processing model for
electronic health records [6.935142529928062]
本稿では,臨床自然言語処理のための匿名認識モデルを提案する。
このモデルは、薬物名、ルート、頻度、摂取量、強度、形態、期間の7つのカテゴリを認識するよう訓練されている。
本研究は、米国における集中治療室のデータから、英国における二次医療精神保健記録(CRIS)へのモデル導入可能性を評価するものである。
論文 参考訳(メタデータ) (2020-03-03T00:55:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。