Opytimizer: A Nature-Inspired Python Optimizer
- URL: http://arxiv.org/abs/1912.13002v2
- Date: Wed, 2 Dec 2020 15:15:59 GMT
- Title: Opytimizer: A Nature-Inspired Python Optimizer
- Authors: Gustavo H. de Rosa, Douglas Rodrigues, Jo\~ao P. Papa
- Abstract summary: It aims at selecting a feasible set of parameters in an attempt to solve a particular problem.
We propose a Python-based meta-heuristic optimization framework as Opyyy as Opheurisizer.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optimization aims at selecting a feasible set of parameters in an attempt to
solve a particular problem, being applied in a wide range of applications, such
as operations research, machine learning fine-tuning, and control engineering,
among others. Nevertheless, traditional iterative optimization methods use the
evaluation of gradients and Hessians to find their solutions, not being
practical due to their computational burden and when working with non-convex
functions. Recent biological-inspired methods, known as meta-heuristics, have
arisen in an attempt to fulfill these problems. Even though they do not
guarantee to find optimal solutions, they usually find a suitable solution. In
this paper, we proposed a Python-based meta-heuristic optimization framework
denoted as Opytimizer. Several methods and classes are implemented to provide a
user-friendly workspace among diverse meta-heuristics, ranging from
evolutionary- to swarm-based techniques.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Stop Relying on No-Choice and Do not Repeat the Moves: Optimal,
Efficient and Practical Algorithms for Assortment Optimization [38.57171985309975]
We develop efficient algorithms for the problem of regret in assortment selection with emphPlackett Luce (PL) based user choices.
Our methods are practical, provably optimal, and devoid of the aforementioned limitations of the existing methods.
arXiv Detail & Related papers (2024-02-29T07:17:04Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then- framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This approach can be inefficient and requires handcrafted, problem-specific rules for backpropagation through the optimization step.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by predictive models.
arXiv Detail & Related papers (2023-11-22T01:32:06Z) - Robust expected improvement for Bayesian optimization [1.8130068086063336]
We propose a surrogate modeling and active learning technique called robust expected improvement (REI) that ports adversarial methodology into the BO/GP framework.
We illustrate and draw comparisons to several competitors on benchmark synthetic exercises and real problems of varying complexity.
arXiv Detail & Related papers (2023-02-16T22:34:28Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches.
In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model.
arXiv Detail & Related papers (2022-10-23T22:21:10Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - Meta Learning Black-Box Population-Based Optimizers [0.0]
We propose the use of meta-learning to infer population-based blackbox generalizations.
We show that the meta-loss function encourages a learned algorithm to alter its search behavior so that it can easily fit into a new context.
arXiv Detail & Related papers (2021-03-05T08:13:25Z) - Particle Swarm Optimization: Fundamental Study and its Application to
Optimization and to Jetty Scheduling Problems [0.0]
The advantages of evolutionary algorithms with respect to traditional methods have been greatly discussed in the literature.
While particle swarms share such advantages, they outperform evolutionary algorithms in that they require lower computational cost and easier implementation.
This paper does not intend to study their tuning, general-purpose settings are taken from previous studies, and virtually the same algorithm is used to optimize a variety of notably different problems.
arXiv Detail & Related papers (2021-01-25T02:06:30Z) - Learning with Differentiable Perturbed Optimizers [54.351317101356614]
We propose a systematic method to transform operations into operations that are differentiable and never locally constant.
Our approach relies on perturbeds, and can be used readily together with existing solvers.
We show how this framework can be connected to a family of losses developed in structured prediction, and give theoretical guarantees for their use in learning tasks.
arXiv Detail & Related papers (2020-02-20T11:11:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.