論文の概要: Automated Pavement Crack Segmentation Using U-Net-based Convolutional
Neural Network
- arxiv url: http://arxiv.org/abs/2001.01912v4
- Date: Tue, 30 Jun 2020 14:43:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-13 20:54:04.787992
- Title: Automated Pavement Crack Segmentation Using U-Net-based Convolutional
Neural Network
- Title(参考訳): U-Net-based Convolutional Neural Network を用いた自動舗装き裂分割
- Authors: Stephen L. H. Lau, Edwin K. P. Chong, Xu Yang, and Xin Wang
- Abstract要約: 本稿では,畳み込みニューラルネットワークを用いた深層学習手法を提案する。
私たちのアプローチは、他の機械学習技術と比較して、最小限の機能エンジニアリングを必要とします。
提案手法は,CFDデータセットで96%,Crack500データセットで73%のF1スコアを達成し,これらのデータセットでテストされた他のアルゴリズムよりも優れていた。
- 参考スコア(独自算出の注目度): 10.48658033897047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated pavement crack image segmentation is challenging because of
inherent irregular patterns, lighting conditions, and noise in images.
Conventional approaches require a substantial amount of feature engineering to
differentiate crack regions from non-affected regions. In this paper, we
propose a deep learning technique based on a convolutional neural network to
perform segmentation tasks on pavement crack images. Our approach requires
minimal feature engineering compared to other machine learning techniques. We
propose a U-Net-based network architecture in which we replace the encoder with
a pretrained ResNet-34 neural network. We use a "one-cycle" training schedule
based on cyclical learning rates to speed up the convergence. Our method
achieves an F1 score of 96% on the CFD dataset and 73% on the Crack500 dataset,
outperforming other algorithms tested on these datasets. We perform ablation
studies on various techniques that helped us get marginal performance boosts,
i.e., the addition of spatial and channel squeeze and excitation (SCSE)
modules, training with gradually increasing image sizes, and training various
neural network layers with different learning rates.
- Abstract(参考訳): 自動舗装き裂画像分割は,不規則なパターン,照明条件,画像のノイズが原因で困難である。
従来のアプローチでは、クラック領域と非影響領域を区別するために、かなりの量の特徴工学が必要である。
本稿では,畳み込みニューラルネットワークを用いた,舗装き裂画像のセグメンテーションタスクを行う深層学習手法を提案する。
私たちのアプローチでは、他の機械学習技術と比較して、最小限の機能エンジニアリングが必要です。
我々は、エンコーダを事前訓練されたResNet-34ニューラルネットワークに置き換えるU-Netベースのネットワークアーキテクチャを提案する。
循環学習率に基づく「1サイクル」トレーニングスケジュールを使用して収束を高速化する。
提案手法はCFDデータセットで96%,Crack500データセットで73%のF1スコアを達成し,これらのデータセットでテストされた他のアルゴリズムよりも優れていた。
我々は,空間的・チャネル的圧縮・励起(SCSE)モジュールの追加,画像サイズの増加によるトレーニング,学習速度の異なるニューラルネットワークレイヤのトレーニングなど,限界性能向上に寄与するさまざまなテクニックについて,アブレーション研究を行った。
関連論文リスト
- Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
本稿では,SNN(Spike Neural Networks)とU-Netアーキテクチャを組み合わせた,画像処理のためのスパイキング-UNetの概念を紹介する。
効率的なスパイキング-UNetを実現するためには,スパイクによる高忠実度情報伝播の確保と,効果的なトレーニング戦略の策定という2つの課題に直面する。
実験の結果,画像のセグメンテーションとデノイングにおいて,スパイキングUNetは非スパイキングと同等の性能を発揮することがわかった。
論文 参考訳(メタデータ) (2023-07-20T16:00:19Z) - Increasing the Accuracy of a Neural Network Using Frequency Selective
Mesh-to-Grid Resampling [4.211128681972148]
ニューラルネットワークの入力データの処理にFSMR(Keypoint frequency selective mesh-to-grid resampling)を提案する。
ネットワークアーキテクチャや分類タスクによって、トレーニング中のFSMRの適用は学習プロセスに役立ちます。
ResNet50とOxflower17データセットの分類精度は最大4.31ポイント向上できる。
論文 参考訳(メタデータ) (2022-09-28T21:34:47Z) - A Proper Orthogonal Decomposition approach for parameters reduction of
Single Shot Detector networks [0.0]
本稿では,古典的モデルオーダー削減手法であるProper Orthogonal Decompositionに基づく次元削減フレームワークを提案する。
我々は、PASCAL VOCデータセットを用いてSSD300アーキテクチャにそのようなフレームワークを適用し、ネットワーク次元の削減と、転送学習コンテキストにおけるネットワークの微調整における顕著な高速化を実証した。
論文 参考訳(メタデータ) (2022-07-27T14:43:14Z) - Self-Denoising Neural Networks for Few Shot Learning [66.38505903102373]
既存のニューラルアーキテクチャの複数の段階でノイズを追加すると同時に、この付加ノイズに対して堅牢であるように学習する新しいトレーニングスキームを提案する。
このアーキテクチャは、SDNN(Self-Denoising Neural Network)と呼ばれ、現代の畳み込みニューラルネットワークに容易に適用できます。
論文 参考訳(メタデータ) (2021-10-26T03:28:36Z) - Multirate Training of Neural Networks [0.0]
視覚およびNLPにおける様々な伝達学習アプリケーションに対して、ほぼ半分の時間でディープニューラルネットワークを微調整できることを示す。
本稿では,異なる時間スケールで全ネットワークをトレーニングすることで,データに存在するさまざまな特徴を同時に学習するマルチレート手法を提案する。
論文 参考訳(メタデータ) (2021-06-20T22:44:55Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
そこで我々は,局所的批判訓練と呼ばれる新しいモデル並列学習手法を提案する。
提案手法は,畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)の両方において,階層群の更新プロセスの分離に成功したことを示す。
また,提案手法によりトレーニングされたネットワークを構造最適化に利用できることを示す。
論文 参考訳(メタデータ) (2021-02-03T09:30:45Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
論文 参考訳(メタデータ) (2020-08-26T17:59:36Z) - Curriculum By Smoothing [52.08553521577014]
畳み込みニューラルネットワーク(CNN)は、画像分類、検出、セグメンテーションなどのコンピュータビジョンタスクにおいて顕著な性能を示している。
アンチエイリアスフィルタやローパスフィルタを用いてCNNの機能埋め込みを円滑化するエレガントなカリキュラムベースのスキームを提案する。
トレーニング中に特徴マップ内の情報量が増加するにつれて、ネットワークはデータのより優れた表現を徐々に学習することができる。
論文 参考訳(メタデータ) (2020-03-03T07:27:44Z) - Extracting dispersion curves from ambient noise correlations using deep
learning [1.0237120900821557]
本研究では,表面波の分散曲線の位相を分類する機械学習手法を提案する。
受信機のアレイで観測された表面の標準FTAN解析を画像に変換する。
我々は、教師付き学習目標を備えた畳み込みニューラルネットワーク(U-net)アーキテクチャを使用し、伝達学習を取り入れる。
論文 参考訳(メタデータ) (2020-02-05T23:41:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。