論文の概要: Quantum embeddings for machine learning
- arxiv url: http://arxiv.org/abs/2001.03622v2
- Date: Mon, 10 Feb 2020 14:11:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-12 23:32:23.035541
- Title: Quantum embeddings for machine learning
- Title(参考訳): 機械学習のための量子埋め込み
- Authors: Seth Lloyd, Maria Schuld, Aroosa Ijaz, Josh Izaac, Nathan Killoran
- Abstract要約: 量子分類器は、機械学習モデルとして使用されるトレーニング可能な量子回路である。
我々は、ヒルベルト空間におけるデータクラスを最大限に分離することを目的として、回路の最初の部分(埋め込み)を訓練することを提案する。
このアプローチは量子機械学習のための強力な分析フレームワークを提供する。
- 参考スコア(独自算出の注目度): 5.16230883032882
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum classifiers are trainable quantum circuits used as machine learning
models. The first part of the circuit implements a quantum feature map that
encodes classical inputs into quantum states, embedding the data in a
high-dimensional Hilbert space; the second part of the circuit executes a
quantum measurement interpreted as the output of the model. Usually, the
measurement is trained to distinguish quantum-embedded data. We propose to
instead train the first part of the circuit -- the embedding -- with the
objective of maximally separating data classes in Hilbert space, a strategy we
call quantum metric learning. As a result, the measurement minimizing a linear
classification loss is already known and depends on the metric used: for
embeddings separating data using the l1 or trace distance, this is the Helstrom
measurement, while for the l2 or Hilbert-Schmidt distance, it is a simple
overlap measurement. This approach provides a powerful analytic framework for
quantum machine learning and eliminates a major component in current models,
freeing up more precious resources to best leverage the capabilities of
near-term quantum information processors.
- Abstract(参考訳): 量子分類器は、機械学習モデルとして使用されるトレーニング可能な量子回路である。
回路の第1部は古典的な入力を量子状態に符号化し、高次元ヒルベルト空間にデータを埋め込む量子特徴写像を実装し、第2部はモデルの出力として解釈される量子測定を実行する。
通常、測定は量子埋め込みデータを区別するために訓練される。
代わりに、Hilbert空間におけるデータクラスを最大限に分離することを目的として、回路の最初の部分(埋め込み)をトレーニングすることを提案します。
結果として、線形分類損失を最小化する測定は既に知られており、l1またはトレース距離を用いてデータを分離するための埋め込み、これはヘルストロム測定であり、l2またはヒルベルト・シュミット距離については単純な重複測定である。
このアプローチは、量子機械学習のための強力な分析フレームワークを提供し、現在のモデルの主要なコンポーネントを取り除き、短期的な量子情報プロセッサの能力を最大限活用するためにより貴重なリソースを解放する。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - MORE: Measurement and Correlation Based Variational Quantum Circuit for
Multi-classification [10.969833959443495]
MOREは、測定と相関に基づく変分量子多重分類器の略である。
我々はQiskit Pythonライブラリを使ってMOREを実装し、ノイズフリーとノイズの多い量子システムの両方で広範囲にわたる実験により評価する。
論文 参考訳(メタデータ) (2023-07-21T19:33:10Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
量子計算を古典的な結果によって補う手法を提案する。
予測の利点を生かして、新しいタイプの量子測度がもたらされる。
予測量子測定では、古典計算と量子計算の結果の組み合わせは最後にのみ起こる。
論文 参考訳(メタデータ) (2022-09-12T15:47:44Z) - Compact quantum kernel-based binary classifier [2.0684234025249717]
本稿では、カーネルベースのバイナリ分類器を構築するための最も単純な量子回路を提案する。
量子ビットの数は2つに減らされ、ステップの数は線形に減らされる。
私たちの設計は、不均衡なデータセットを扱うための簡単な方法も提供します。
論文 参考訳(メタデータ) (2022-02-04T14:30:53Z) - Q-means using variational quantum feature embedding [0.9572675949441442]
変分回路の目的は、量子的特徴を持つヒルベルト空間のクラスターを極大に分離することである。
量子回路の出力は、特定のクラスタに属する全ての量子状態の重ね合わせを表す特徴的なクラスター量子状態である。
期待値の勾配は、変動回路のパラメータを最適化し、より良い量子特徴写像を学習するために用いられる。
論文 参考訳(メタデータ) (2021-12-11T13:00:51Z) - Trainable Discrete Feature Embeddings for Variational Quantum Classifier [4.40450723619303]
我々は、QRAC(Quantum Random Access Coding)を用いて、より少ない量子ビットで離散的な特徴をマップする方法を示す。
QRACと最近提案された量子量学習(quantum metric learning)と呼ばれる量子特徴マップのトレーニング戦略を組み合わせることで、個別の特徴をトレーニング可能な量子回路に埋め込む新しい手法を提案する。
論文 参考訳(メタデータ) (2021-06-17T12:02:01Z) - Tree tensor network classifiers for machine learning: from
quantum-inspired to quantum-assisted [0.0]
本稿では,データベクトルの長さが指数関数的に大きいヒルベルト空間において,多変量データを量子状態に符号化する量子支援機械学習(QAML)法について述べる。
本稿ではゲートベースの量子コンピューティングデバイスに実装可能なアプローチを提案する。
論文 参考訳(メタデータ) (2021-04-06T02:31:48Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
本稿では、生成した状態の古典的ベクトル形式を生成する効率的な読み出しプロトコルを提案する。
我々のプロトコルは、出力状態が入力行列の行空間にある場合に適合する。
我々の技術ツールの1つは、Gram-Schmidt正則手順を実行するための効率的な量子アルゴリズムである。
論文 参考訳(メタデータ) (2020-04-14T11:05:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。