論文の概要: Regularization Helps with Mitigating Poisoning Attacks:
Distributionally-Robust Machine Learning Using the Wasserstein Distance
- arxiv url: http://arxiv.org/abs/2001.10655v1
- Date: Wed, 29 Jan 2020 01:16:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-05 21:13:01.194243
- Title: Regularization Helps with Mitigating Poisoning Attacks:
Distributionally-Robust Machine Learning Using the Wasserstein Distance
- Title(参考訳): 正規化は中毒攻撃の緩和に役立つ:wasserstein距離を用いた分散ロバスト機械学習
- Authors: Farhad Farokhi
- Abstract要約: 我々は、データ中毒攻撃の影響を軽減するため、機械学習に分散ロバスト最適化を用いる。
我々は、最悪の場合のフィットネスの上限を求めることで、分散ロバストな機械学習問題を緩和する。
- 参考スコア(独自算出の注目度): 14.095523601311374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We use distributionally-robust optimization for machine learning to mitigate
the effect of data poisoning attacks. We provide performance guarantees for the
trained model on the original data (not including the poison records) by
training the model for the worst-case distribution on a neighbourhood around
the empirical distribution (extracted from the training dataset corrupted by a
poisoning attack) defined using the Wasserstein distance. We relax the
distributionally-robust machine learning problem by finding an upper bound for
the worst-case fitness based on the empirical sampled-averaged fitness and the
Lipschitz-constant of the fitness function (on the data for given model
parameters) as regularizer. For regression models, we prove that this
regularizer is equal to the dual norm of the model parameters. We use the Wine
Quality dataset, the Boston Housing Market dataset, and the Adult dataset for
demonstrating the results of this paper.
- Abstract(参考訳): データ中毒攻撃の影響を軽減するために,機械学習に分散ロバスト最適化を用いる。
我々は,ワッサースタイン距離を用いて定義された経験的分布(毒殺攻撃によって破損した訓練データセットから抽出した)の近傍における最悪の事例分布のモデルをトレーニングすることにより,トレーニングしたモデル(毒物記録を含む)に対する性能保証を提供する。
実験的なサンプル平均適合度と(与えられたモデルパラメータのデータに基づいて)適合関数のリプシッツ定数に基づいて、最悪の場合のフィットネスの上限を正則化することにより、分散ロバストな機械学習問題を緩和する。
回帰モデルの場合、この正規化器はモデルパラメータの双対ノルムと等しいことが証明される。
我々は、ワイン品質データセット、ボストン住宅市場データセット、およびアダルトデータセットを用いて、本論文の結果を実証する。
関連論文リスト
- Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - Quantifying Distribution Shifts and Uncertainties for Enhanced Model Robustness in Machine Learning Applications [0.0]
本研究では,合成データを用いたモデル適応と一般化について検討する。
我々は、データ類似性を評価するために、Kullback-Leiblerの発散、Jensen-Shannon距離、Mahalanobis距離などの量的尺度を用いる。
本研究は,マハラノビス距離などの統計指標を用いて,モデル予測が低誤差の「補間体制」内にあるか,あるいは高誤差の「補間体制」が分布変化とモデル不確実性を評価するための補完的手法を提供することを示唆している。
論文 参考訳(メタデータ) (2024-05-03T10:05:31Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Distributionally Robust Post-hoc Classifiers under Prior Shifts [31.237674771958165]
本研究では,クラスプライヤやグループプライヤの分布の変化による変化に頑健なトレーニングモデルの問題点について検討する。
本稿では,事前学習モデルからの予測に対するスケーリング調整を行う,非常に軽量なポストホック手法を提案する。
論文 参考訳(メタデータ) (2023-09-16T00:54:57Z) - Sampling Bias Correction for Supervised Machine Learning: A Bayesian
Inference Approach with Practical Applications [0.0]
本稿では,データセットがラベルの不均衡などの意図的なサンプルバイアスを受ける可能性がある問題について議論する。
次に、この解をバイナリロジスティック回帰に適用し、データセットが意図的にサンプルバイアスを受けるシナリオについて議論する。
この手法は, 医療科学から画像認識, マーケティングに至るまで, ビッグデータの統計的推測に広く応用できる。
論文 参考訳(メタデータ) (2022-03-11T20:46:37Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Bayesian analysis of the prevalence bias: learning and predicting from
imbalanced data [10.659348599372944]
本稿では,モデル学習のための理論的および計算的枠組みと,有病率バイアスの存在下での予測について述べる。
原則的なトレーニング損失の代替として,要約曲線から操作点を選択することで,テスト時の手順を補完するものだ。
バックプロパゲーションを用いた(深い)学習の現在のパラダイムにシームレスに統合され、ベイズモデルと自然に結合する。
論文 参考訳(メタデータ) (2021-07-31T14:36:33Z) - Evaluating State-of-the-Art Classification Models Against Bayes
Optimality [106.50867011164584]
正規化フローを用いて学習した生成モデルのベイズ誤差を正確に計算できることを示す。
われわれの手法を用いて、最先端の分類モデルについて徹底的な調査を行う。
論文 参考訳(メタデータ) (2021-06-07T06:21:20Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
スペクトルベースのサブスペース学習は、多くの機械学習パイプラインにおいて、一般的なデータ前処理ステップである。
ほとんどの部分空間学習法は、不確実性の高いデータにつながる可能性のある測定の不正確さやアーティファクトを考慮していない。
論文 参考訳(メタデータ) (2020-09-01T15:08:23Z) - A Distributionally Robust Approach to Fair Classification [17.759493152879013]
本研究では、性別や民族などのセンシティブな属性に対する差別を防止する不公平なペナルティを持つロジスティックなロジスティック回帰モデルを提案する。
このモデルは、トレーニングデータ上の経験的分布を中心とするワッサーシュタイン球が分布の不確かさのモデル化に使用される場合、トラクタブル凸最適化問題と等価である。
得られた分類器は, 合成データセットと実データセットの両方において, 予測精度の限界損失による公平性の向上を実証する。
論文 参考訳(メタデータ) (2020-07-18T22:34:48Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。