論文の概要: Towards a Kernel based Uncertainty Decomposition Framework for Data and
Models
- arxiv url: http://arxiv.org/abs/2001.11495v4
- Date: Tue, 1 Dec 2020 14:42:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-05 12:04:12.747034
- Title: Towards a Kernel based Uncertainty Decomposition Framework for Data and
Models
- Title(参考訳): データとモデルのためのカーネルベースの不確実性分解フレームワークに向けて
- Authors: Rishabh Singh and Jose C. Principe
- Abstract要約: 本稿では,データとモデルの両方において予測の不確実性を定量化する新しいフレームワークを提案する。
我々は,このフレームワークを,点予測ニューラルネットワークモデルの予測不確実性定量化のためのサロゲートツールとして応用する。
- 参考スコア(独自算出の注目度): 20.348825818435767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a new framework for quantifying predictive uncertainty
for both data and models that relies on projecting the data into a Gaussian
reproducing kernel Hilbert space (RKHS) and transforming the data probability
density function (PDF) in a way that quantifies the flow of its gradient as a
topological potential field quantified at all points in the sample space. This
enables the decomposition of the PDF gradient flow by formulating it as a
moment decomposition problem using operators from quantum physics, specifically
the Schrodinger's formulation. We experimentally show that the higher order
modes systematically cluster the different tail regions of the PDF, thereby
providing unprecedented discriminative resolution of data regions having high
epistemic uncertainty. In essence, this approach decomposes local realizations
of the data PDF in terms of uncertainty moments. We apply this framework as a
surrogate tool for predictive uncertainty quantification of point-prediction
neural network models, overcoming various limitations of conventional Bayesian
based uncertainty quantification methods. Experimental comparisons with some
established methods illustrate performance advantages exhibited by our
framework.
- Abstract(参考訳): 本稿では,データをガウス再生核ヒルベルト空間 (rkhs) に投影し,データ確率密度関数 (pdf) をサンプル空間のすべての点で定量化された位相ポテンシャル場として,その勾配の流れを定量化する手法を用いて,データとモデルの両方の予測不確実性を定量化する新しい枠組みを提案する。
これにより、量子物理学、特にシュロディンガーの定式化を用いたモーメント分解問題として定式化することで、PDF勾配流の分解が可能となる。
実験により,高次モードはPDFの異なる尾領域を体系的にクラスタリングし,高い皮疹不確実性を有するデータ領域を前代未聞の判別分解することを示した。
本質的に、このアプローチは不確実性モーメントの観点からデータpdfの局所的な実現を分解する。
本手法は,従来のベイズ型不確実性定量化手法の様々な限界を克服し,予測不確実性定量化のためのサロゲートツールとして応用する。
いくつかの確立された手法との実験的比較は、我々のフレームワークが示す性能上の利点を示している。
関連論文リスト
- Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models [0.0]
本稿では,拡散モデルを用いてベイズ推定を行う方法を示す。
本稿では,新しいノイズスケジュールを用いて,標準的なDBMトレーニングを通じてそのようなマップを学習する方法を示す。
その結果は、低次元の潜在空間上で一意に定義される非常に表現性の高い生成モデルのクラスである。
論文 参考訳(メタデータ) (2024-07-11T19:58:19Z) - Stochastic full waveform inversion with deep generative prior for uncertainty quantification [0.0]
フルウェーブフォーム・インバージョン(FWI)は非線形でしばしば不均一な逆問題を解決する。
FWIは、局所的なミニマトラップや不確実性の不十分な処理といった課題を提示している。
本研究では,ベイジアン逆転に対する物理パラメータの事前分布として,深部生成モデルを活用することを提案する。
論文 参考訳(メタデータ) (2024-06-07T11:44:50Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
一般的に用いられる有限差分法に代わる方法を提案する。
我々は,これらの手法を実問題と類似した問題に適用可能であること,および方程式発見アルゴリズムの収束性を確保する能力の観点から評価する。
論文 参考訳(メタデータ) (2023-11-09T23:32:06Z) - A General Framework for quantifying Aleatoric and Epistemic uncertainty
in Graph Neural Networks [0.29494468099506893]
Graph Neural Networks(GNN)は、グラフ理論と機械学習をエレガントに統合する強力なフレームワークを提供する。
本稿では,モデル誤差と測定の不確かさからGNNの予測の不確かさを定量化する問題を考察する。
ベイジアンフレームワークにおける両源の不確実性を扱うための統一的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-20T05:25:40Z) - Non-Linear Spectral Dimensionality Reduction Under Uncertainty [107.01839211235583]
我々は、不確実性情報を活用し、いくつかの従来のアプローチを直接拡張する、NGEUと呼ばれる新しい次元削減フレームワークを提案する。
提案したNGEUの定式化は,大域的な閉形式解を示し,Radecherの複雑性に基づいて,基礎となる不確実性がフレームワークの一般化能力に理論的にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2022-02-09T19:01:33Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Quantifying Model Predictive Uncertainty with Perturbation Theory [21.591460685054546]
本稿では,ニューラルネットワークの予測不確実性定量化のためのフレームワークを提案する。
量子物理学の摂動理論を用いてモーメント分解問題を定式化する。
我々の手法は、より高精度でキャリブレーションの高い高速なモデル予測不確実性推定を提供する。
論文 参考訳(メタデータ) (2021-09-22T17:55:09Z) - A Kernel Framework to Quantify a Model's Local Predictive Uncertainty
under Data Distributional Shifts [21.591460685054546]
訓練されたニューラルネットワークの内部層出力は、そのマッピング機能と入力データ分布の両方に関連するすべての情報を含む。
生予測空間のPDFを明示的に推定する訓練ニューラルネットワークの予測不確実性定量化のためのフレームワークを提案する。
カーネルフレームワークは、モデル予測エラーを検出する能力に基づいて、はるかに精度の高いモデル不確実性推定を提供する。
論文 参考訳(メタデータ) (2021-03-02T00:31:53Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。