論文の概要: Nonparametric Regression Quantum Neural Networks
- arxiv url: http://arxiv.org/abs/2002.02818v1
- Date: Fri, 7 Feb 2020 14:44:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-03 05:20:55.001633
- Title: Nonparametric Regression Quantum Neural Networks
- Title(参考訳): 非パラメトリック回帰量子ニューラルネットワーク
- Authors: Do Ngoc Diep, Koji Nagata, and Tadao Nakamura
- Abstract要約: 本稿では、非パラメトリック量子ニューラルネットワーク(LNR-QNN)、非回帰量子ニューラルネットワーク(PNR-QNN)を分析し、実装する。
ガウス・ジョーダン除去ニューラルネットワーク(GJE-QNN)による実装
- 参考スコア(独自算出の注目度): 0.11470070927586014
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In two pervious papers \cite{dndiep3}, \cite{dndiep4}, the first author
constructed the least square quantum neural networks (LS-QNN), and ploynomial
interpolation quantum neural networks ( PI-QNN), parametrico-stattistical QNN
like: leanr regrassion quantum neural networks (LR-QNN), polynomial regression
quantum neural networks (PR-QNN), chi-squared quantum neural netowrks
($\chi^2$-QNN). We observed that the method works also in the cases by using
nonparametric statistics. In this paper we analyze and implement the
nonparametric tests on QNN such as: linear nonparametric regression quantum
neural networks (LNR-QNN), polynomial nonparametric regression quantum neural
networks (PNR-QNN). The implementation is constructed through the Gauss-Jordan
Elimination quantum neural networks (GJE-QNN).The training rule is to use the
high probability confidence regions or intervals.
- Abstract(参考訳): 最初の著者は、最小二乗量子ニューラルネットワーク (LS-QNN) と ploynomial interpolation quantum Neural Network (PI-QNN)、parametrico-stattistical QNN like: leanr regrassion quantum Neural Network (LR-QNN)、 polynomial regression quantum Neural Network (PR-QNN)、chi-squared quantum neural netowrks (\chi^2$-QNN) を構築した。
本手法は非パラメトリック統計を用いた場合においても有効であることがわかった。
本稿では、線形非パラメトリック回帰量子ニューラルネットワーク(LNR-QNN)、多項式非パラメトリック回帰量子ニューラルネットワーク(PNR-QNN)などのQNNにおける非パラメトリックテストを分析し、実装する。
実装はガウス・ジョーダン除去量子ニューラルネットワーク(GJE-QNN)によって構成されている。
トレーニングルールは、高い確率信頼領域または間隔を使用することである。
関連論文リスト
- CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) とContinuous Time Recurrent Quantum Neural Network (CTRQNet) を開発した。
LQNetとCTRQNetは、バイナリ分類によってCIFAR 10で40%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-08-28T00:56:03Z) - Analyzing Convergence in Quantum Neural Networks: Deviations from Neural
Tangent Kernels [20.53302002578558]
量子ニューラルネットワーク(QNN)は、近未来のノイズ中間スケール量子(NISQ)コンピュータで効率的に実装可能なパラメータ化マッピングである。
既存の実証的および理論的研究にもかかわらず、QNNトレーニングの収束は完全には理解されていない。
論文 参考訳(メタデータ) (2023-03-26T22:58:06Z) - Variational Quantum Neural Networks (VQNNS) in Image Classification [0.0]
本稿では,量子最適化アルゴリズムを用いて量子ニューラルネットワーク(QNN)のトレーニングを行う方法について検討する。
本稿では、変分量子ニューラルネットワーク(VQNN)と呼ばれる入力層として、変分パラメータ化回路を組み込んだQNN構造を作成する。
VQNNは、MNIST桁認識(複雑でない)とクラック画像分類データセットで実験され、QNNよりも少ない時間で、適切なトレーニング精度で計算を収束させる。
論文 参考訳(メタデータ) (2023-03-10T11:24:32Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
この研究は、他のニューラルネットワークの重みや勾配を処理できるニューラルネットワークの設計を研究する。
隠れた層状ニューロンには固有の順序がないため, 深いフィードフォワードネットワークの重みに生じる置換対称性に着目する。
実験の結果, 置換同変ニューラル関数は多種多様なタスクに対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-02-27T18:52:38Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - Quantum-inspired Complex Convolutional Neural Networks [17.65730040410185]
我々は、より豊かな表現能力とより良い非線形性を持つ複素数値重みを利用することにより、量子刺激ニューロンを改善した。
我々は、高次元データを処理できる量子インスパイアされた畳み込みニューラルネットワーク(QICNN)のモデルを描く。
5つのQICNNの分類精度をMNISTとCIFAR-10データセットで検証した。
論文 参考訳(メタデータ) (2021-10-31T03:10:48Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
量子ニューラルネットワーク(QNN)は、量子スピードアップを達成するために古典的ニューラルネットワークの一般化として提案されている。
QNNのトレーニングには、入力キュービット数に指数関数的に勾配速度がなくなるため、非常に大きなボトルネックが存在する。
木テンソルとステップ制御された構造を持つQNNを二分分類に適用し,ランダムな構造を持つQNNと比較してより高速な収束率と精度を示す。
論文 参考訳(メタデータ) (2020-11-12T08:32:04Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z) - Recurrent Quantum Neural Networks [7.6146285961466]
リカレントニューラルネットワークは、機械学習における多くのシーケンス対シーケンスモデルの基盤となっている。
非自明なタスクに対して実証可能な性能を持つ量子リカレントニューラルネットワーク(QRNN)を構築する。
我々はQRNNをMNIST分類で評価し、QRNNに各画像ピクセルを供給し、また、最新のデータ拡張を前処理のステップとして利用する。
論文 参考訳(メタデータ) (2020-06-25T17:59:44Z) - Statistical Tests and Confidential Intervals as Thresholds for Quantum
Neural Networks [0.0]
我々は、最小二乗量子ニューラルネットワーク(LS-QNN)、対応する量子ニューラルネットワーク(PI-QNN)、回帰量子ニューラルネットワーク(PR-QNN)、およびカイ二乗量子ニューラルネットワーク(chi2$-QNN)を分析し、構築する。
対応するトレーニングルールのしきい値として、ソリューションやテストを使用します。
論文 参考訳(メタデータ) (2020-01-30T05:41:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。