Modeling Musical Onset Probabilities via Neural Distribution Learning
- URL: http://arxiv.org/abs/2002.03559v1
- Date: Mon, 10 Feb 2020 05:38:51 GMT
- Title: Modeling Musical Onset Probabilities via Neural Distribution Learning
- Authors: Jaesung Huh, Egil Martinsson, Adrian Kim, Jung-Woo Ha
- Abstract summary: Musical onset detection can be formulated as a time-to-event (TTE) or time-since-event (TSE) prediction task.
We propose a novel method to model the probability of onsets by introducing a sequential density prediction model.
- Score: 11.094116617743962
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Musical onset detection can be formulated as a time-to-event (TTE) or
time-since-event (TSE) prediction task by defining music as a sequence of onset
events. Here we propose a novel method to model the probability of onsets by
introducing a sequential density prediction model. The proposed model estimates
TTE & TSE distributions from mel-spectrograms using convolutional neural
networks (CNNs) as a density predictor. We evaluate our model on the Bock
dataset show-ing comparable results to previous deep-learning models.
Related papers
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
We propose a Supervised Score-based Model (SSM) which can be viewed as a gradient boosting algorithm combining score matching.
We provide a theoretical analysis of learning and sampling for SSM to balance inference time and prediction accuracy.
Our model outperforms existing models in both accuracy and inference time.
arXiv Detail & Related papers (2024-11-02T07:06:53Z) - SMURF-THP: Score Matching-based UnceRtainty quantiFication for
Transformer Hawkes Process [76.98721879039559]
We propose SMURF-THP, a score-based method for learning Transformer Hawkes process and quantifying prediction uncertainty.
Specifically, SMURF-THP learns the score function of events' arrival time based on a score-matching objective.
We conduct extensive experiments in both event type prediction and uncertainty quantification of arrival time.
arXiv Detail & Related papers (2023-10-25T03:33:45Z) - Predict, Refine, Synthesize: Self-Guiding Diffusion Models for
Probabilistic Time Series Forecasting [10.491628898499684]
We propose TSDiff, an unconditionally-trained diffusion model for time series.
Our proposed self-guidance mechanism enables conditioning TSDiff for downstream tasks during inference, without requiring auxiliary networks or altering the training procedure.
We demonstrate the effectiveness of our method on three different time series tasks: forecasting, refinement, and synthetic data generation.
arXiv Detail & Related papers (2023-07-21T10:56:36Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Neural forecasting at scale [8.245069318446415]
We study the problem of efficiently scaling ensemble-based deep neural networks for time series (TS) forecasting on a large set of time series.
Our model addresses the practical limitations of related models, reducing the training time by half and memory requirement by a factor of 5.
arXiv Detail & Related papers (2021-09-20T17:22:40Z) - Probabilistic Time Series Forecasting with Implicit Quantile Networks [0.7249731529275341]
We combine an autoregressive recurrent neural network to model temporal dynamics with Implicit Quantile Networks to learn a large class of distributions over a time-series target.
Our approach is favorable in terms of point-wise prediction accuracy as well as on estimating the underlying temporal distribution.
arXiv Detail & Related papers (2021-07-08T10:37:24Z) - Predictive process mining by network of classifiers and clusterers: the
PEDF model [0.0]
The PEDF model learns based on events' sequences, durations, and extra features.
The model requires to extract two sets of data from log files.
arXiv Detail & Related papers (2020-11-22T23:27:19Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
Event datasets are sequences of events of various types occurring irregularly over the time-line.
We propose a non-parametric deep neural network approach in order to estimate the underlying intensity functions.
arXiv Detail & Related papers (2020-02-21T23:10:50Z) - ProphetNet: Predicting Future N-gram for Sequence-to-Sequence
Pre-training [85.35910219651572]
We present a new sequence-to-sequence pre-training model called ProphetNet.
It introduces a novel self-supervised objective named future n-gram prediction.
We conduct experiments on CNN/DailyMail, Gigaword, and SQuAD 1.1 benchmarks for abstractive summarization and question generation tasks.
arXiv Detail & Related papers (2020-01-13T05:12:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.