Experimental Three-State Measurement-Device-Independent Quantum Key
Distribution with Uncharacterized Sources
- URL: http://arxiv.org/abs/2002.04944v1
- Date: Wed, 12 Feb 2020 12:24:05 GMT
- Title: Experimental Three-State Measurement-Device-Independent Quantum Key
Distribution with Uncharacterized Sources
- Authors: Xing-Yu Zhou, Hua-Jian Ding, Chun-Hui Zhang, Jian Li, Chun-Mei Zhang
and Qin Wang
- Abstract summary: We investigate uncharacterized MDI-QKD by utilizing a three-state method.
The only requirement for state preparation is that the state are prepared in a bidimensional Hilbert space.
A proof-of-principle demonstration over a 170 km transmission distance is achieved.
- Score: 11.032286575112511
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The measurement-device-independent quantum key distribution (MDI-QKD)
protocol plays an important role in quantum communications due to its high
level of security and practicability. It can be immune to all side-channel
attacks directed on the detecting devices. However, the protocol still contains
strict requirements during state preparation in most existing MDI-QKD schemes,
e.g., perfect state preparation or perfectly characterized sources, which are
very hard to realize in practice. In this letter, we investigate
uncharacterized MDI-QKD by utilizing a three-state method, greatly reducing the
finite-size effect. The only requirement for state preparation is that the
state are prepared in a bidimensional Hilbert space. Furthermore, a
proof-of-principle demonstration over a 170 km transmission distance is
achieved, representing the longest transmission distance under the same
security level on record.
Related papers
- One-sided DI-QKD secure against coherent attacks over long distances [0.0]
Device-Independent (DI) QKD protocols overcome this issue by making minimal device assumptions.
We show that a one-sided DI QKD scheme with two measurements per party is secure against coherent attacks up to detection efficiencies greater than 50.1% specifically on the untrusted side.
We also show that, by placing the source of states close to the untrusted side, our protocol is secure over distances comparable to standard QKD protocols.
arXiv Detail & Related papers (2024-03-18T15:01:17Z) - Measurement-Device-Independent Detection of Beyond-Quantum State [53.64687146666141]
We propose a measurement-device-independent (MDI) test for beyond-quantum state detection.
We discuss the importance of tomographic completeness of the input sets to the detection.
arXiv Detail & Related papers (2023-12-11T06:40:13Z) - Efficient Device-Independent Quantum Key Distribution [4.817429789586127]
Device-independent quantum key distribution (DIQKD) is a key distribution scheme whose security is based on the laws of quantum physics.
We propose an efficient device-independent quantum key distribution protocol in which one participant prepares states and transmits them to another participant.
arXiv Detail & Related papers (2023-11-16T13:01:34Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Robust and efficient verification of graph states in blind
measurement-based quantum computation [52.70359447203418]
Blind quantum computation (BQC) is a secure quantum computation method that protects the privacy of clients.
It is crucial to verify whether the resource graph states are accurately prepared in the adversarial scenario.
Here, we propose a robust and efficient protocol for verifying arbitrary graph states with any prime local dimension.
arXiv Detail & Related papers (2023-05-18T06:24:45Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - Unbalanced-basis-misalignment tolerant measurement-device-independent
quantum key distribution [22.419105320267523]
Measurement-device-independent quantum key distribution (MDIQKD) is a revolutionary protocol since it is physically immune to all attacks on the detection side.
Some protocols release part of the assumptions in the encoding system to keep the practical security, but the performance would be dramatically reduced.
We present a MDIQKD protocol that requires less knowledge of encoding system to combat the troublesome modulation errors and fluctuations.
arXiv Detail & Related papers (2021-08-27T02:16:20Z) - Sample-efficient device-independent quantum state verification and
certification [68.8204255655161]
Authentication of quantum sources is a crucial task in building reliable and efficient protocols for quantum-information processing.
We develop a systematic approach to device-independent verification of quantum states free of IID assumptions in the finite copy regime.
We show that device-independent verification can be performed with optimal sample efficiency.
arXiv Detail & Related papers (2021-05-12T17:48:04Z) - Path-encoded high-dimensional quantum communication over a 2 km
multicore fiber [50.591267188664666]
We demonstrate the reliable transmission over a 2 km long multicore fiber of path-encoded high-dimensional quantum states.
A stable interferometric detection is guaranteed, allowing for low error rates and the generation of 6.3 Mbit/s of secret key rate.
arXiv Detail & Related papers (2021-03-10T11:02:45Z) - Reference-Frame-Independent, Measurement-Device-Independent quantum key
distribution using fewer quantum states [1.1242503819703258]
We show that RFI-MDI-QKD can be implemented using fewer quantum states than those of its original proposal.
Compared to the conventional RFI-MDI-QKD where both parties should transmit six quantum states, it significantly simplifies the implementation of the QKD protocol.
arXiv Detail & Related papers (2020-02-05T01:44:29Z) - Measurement-Device-Independent Quantum Key Distribution with Leaky
Sources [0.0]
Measurement-device-independent quantum key distribution (MDI-QKD) can remove all detection side-channels from quantum communication systems.
We show that MDI-QKD is feasible within a reasonable time frame of signal transmission given that the sources are sufficiently isolated.
arXiv Detail & Related papers (2020-01-21T08:19:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.