Unitary transformation of the electronic Hamiltonian with an exact
quadratic truncation of the Baker-Campbell-Hausdorff expansion
- URL: http://arxiv.org/abs/2002.05701v2
- Date: Sat, 21 Nov 2020 17:17:48 GMT
- Title: Unitary transformation of the electronic Hamiltonian with an exact
quadratic truncation of the Baker-Campbell-Hausdorff expansion
- Authors: Robert A. Lang, Ilya G. Ryabinkin, and Artur F. Izmaylov
- Abstract summary: Application of current and near-term quantum hardware to the electronic structure problem is highly limited by qubit counts, coherence times, and gate fidelities.
We present a new dressing scheme that combines preservation of the Hamiltonian hermiticity and an exact quadratic truncation of the Baker-Campbell-Hausdorff expansion.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Application of current and near-term quantum hardware to the electronic
structure problem is highly limited by qubit counts, coherence times, and gate
fidelities. To address these restrictions within the variational quantum
eigensolver (VQE) framework, many recent contributions have suggested dressing
the electronic Hamiltonian to include a part of electron correlation, leaving
the rest to be accounted by VQE state preparation. We present a new dressing
scheme that combines preservation of the Hamiltonian hermiticity and an exact
quadratic truncation of the Baker-Campbell-Hausdorff expansion. The new
transformation is constructed as the exponent of an involutory linear
combination (ILC) of anti-commuting Pauli products. It incorporates important
strong correlation effects in the dressed Hamiltonian and can be viewed as a
classical preprocessing step alleviating the resource requirements of the
subsequent VQE application. The assessment of the new computational scheme for
electronic structure of the LiH, H$_2$O, and N$_2$ molecules shows significant
increase in efficiency compared to conventional qubit coupled cluster
dressings.
Related papers
- Ab initio extended Hubbard model of short polyenes for efficient quantum computing [0.0]
We propose introducing an extended Hubbard Hamiltonian derived via the ab initio downfolding method.
The ab initio extended Hubbard Hamiltonian may hold significant potential for quantum chemical calculations using quantum computers.
arXiv Detail & Related papers (2024-04-02T04:13:09Z) - Variational Coherent Quantum Annealing [0.0]
We present a hybrid classical-quantum computing paradigm where the quantum part strictly runs within the coherence time of a quantum annealer.
We introduce auxiliary Hamiltonians that vanish at the beginning and end of the evolution to increase the energy gap during the process.
We achieve a substantial reduction in the ground-state error with just six variational parameters and a duration within the device coherence times.
arXiv Detail & Related papers (2023-10-03T17:53:03Z) - Modeling Non-Covalent Interatomic Interactions on a Photonic Quantum
Computer [50.24983453990065]
We show that the cQDO model lends itself naturally to simulation on a photonic quantum computer.
We calculate the binding energy curve of diatomic systems by leveraging Xanadu's Strawberry Fields photonics library.
Remarkably, we find that two coupled bosonic QDOs exhibit a stable bond.
arXiv Detail & Related papers (2023-06-14T14:44:12Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Growth reduction of similarity transformed electronic Hamiltonians in
qubit space [0.0]
One approach to relieving the circuit depth requirements for VQE is to "pre-process" the electronic Hamiltonian.
This often comes at the price of a substantial increase in the number of terms to measure in the similarity transformed Hamiltonian.
We propose an efficient approach to sampling elements from the complete Pauli group for $N$ qubits which minimize the onset of new terms in the transformed Hamiltonian.
arXiv Detail & Related papers (2022-10-08T02:01:53Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Quantum simulation of electronic structure with a transcorrelated
Hamiltonian: improved accuracy with a smaller footprint on the quantum
computer [2.640996411999115]
Quantum simulations of electronic structure with a transformed Hamiltonian that includes some electron correlation effects are demonstrated.
A transcorrelated Hamiltonian, paired with extremely compact bases, produces explicitly correlated energies comparable to those from much larger bases.
The use of the very compact transcorrelated Hamiltonian reduces the number of CNOT gates required to achieve cc-pVTZ quality by up to two orders of magnitude, and the number qubits by a factor of three.
arXiv Detail & Related papers (2020-06-03T19:15:32Z) - Resource Efficient Chemistry on Quantum Computers with the Variational
Quantum Eigensolver and The Double Unitary Coupled-Cluster approach [0.0]
We show that the number of qubits scales linearly with the size of molecular basis.
We employ the double unitary coupled-cluster (DUCC) method to effectively downfold correlation effects into the reduced-size orbital space.
Using downfolding techniques, we demonstrate that properly constructed effective Hamiltonians can capture the effect of the whole orbital space in small-size active spaces.
arXiv Detail & Related papers (2020-04-16T15:59:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.