Quantum Bandits
- URL: http://arxiv.org/abs/2002.06395v2
- Date: Tue, 22 Sep 2020 14:13:18 GMT
- Title: Quantum Bandits
- Authors: Balthazar Casal\'e, Giuseppe Di Molfetta, Hachem Kadri, Liva Ralaivola
- Abstract summary: We consider the quantum version of the bandit problem known as em best arm identification (BAI)
We first propose a quantum modeling of the BAI problem, which assumes that both the learning agent and the environment are quantum.
We then propose an algorithm based on quantum amplitude amplification to solve BAI.
- Score: 10.151012770913622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the quantum version of the bandit problem known as {\em best arm
identification} (BAI). We first propose a quantum modeling of the BAI problem,
which assumes that both the learning agent and the environment are quantum; we
then propose an algorithm based on quantum amplitude amplification to solve
BAI. We formally analyze the behavior of the algorithm on all instances of the
problem and we show, in particular, that it is able to get the optimal solution
quadratically faster than what is known to hold in the classical case.
Related papers
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Hybrid classical-quantum branch-and-bound algorithm for solving integer
linear problems [0.0]
Quantum annealers are suited to solve several logistic optimization problems expressed in the QUBO formulation.
The solutions proposed by the quantum annealers are generally not optimal, as thermal noise and other disturbing effects arise when the number of qubits involved in the calculation is too large.
We propose the use of the classical branch-and-bound algorithm, that divides the problem into sub-problems which are described by a lower number of qubits.
arXiv Detail & Related papers (2023-11-16T09:19:01Z) - Quantum Bayesian Optimization [64.58749619145908]
We introduce the quantum-Gaussian process-upper confidence bound (Q-GP-UCB) algorithm.
It is the first BO algorithm able to achieve a regret upper bound of O(polylog T), which is significantly smaller than its regret lower bound of Omega(sqrt(T)) in the classical setting.
Thanks to our novel analysis of the confidence ellipsoid, our Q-GP-UCB with the linear kernel achieves a smaller regret than the quantum linear UCB algorithm.
arXiv Detail & Related papers (2023-10-09T03:10:42Z) - Iterative Quantum Algorithms for Maximum Independent Set: A Tale of
Low-Depth Quantum Algorithms [0.0]
We study a new class of hybrid approaches to quantum optimization, termed Iterative Maximum Quantum Algorithms.
We show that for QAOA with depth $p=1$, this algorithm performs exactly the same operations and selections as the classical greedy algorithm for MIS.
arXiv Detail & Related papers (2023-09-22T18:00:03Z) - A Universal Quantum Algorithm for Weighted Maximum Cut and Ising
Problems [0.0]
We propose a hybrid quantum-classical algorithm to compute approximate solutions of binary problems.
We employ a shallow-depth quantum circuit to implement a unitary and Hermitian operator that block-encodes the weighted maximum cut or the Ising Hamiltonian.
Measuring the expectation of this operator on a variational quantum state yields the variational energy of the quantum system.
arXiv Detail & Related papers (2023-06-10T23:28:13Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum-Enhanced Greedy Combinatorial Optimization Solver [12.454028945013924]
We introduce an iterative quantum optimization algorithm to solve optimization problems.
We implement the quantum algorithm on a programmable superconducting quantum system using up to 72 qubits.
We find the quantum algorithm systematically outperforms its classical greedy counterpart, signaling a quantum enhancement.
arXiv Detail & Related papers (2023-03-09T18:59:37Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.