Guiding Graph Embeddings using Path-Ranking Methods for Error Detection
innoisy Knowledge Graphs
- URL: http://arxiv.org/abs/2002.08762v2
- Date: Sat, 12 Dec 2020 20:43:10 GMT
- Title: Guiding Graph Embeddings using Path-Ranking Methods for Error Detection
innoisy Knowledge Graphs
- Authors: K. Bougiatiotis, R. Fasoulis, F. Aisopos, A. Nentidis, G. Paliouras
- Abstract summary: This work presents various mainstream approaches and proposes a hybrid and modular methodology for the task.
We compare different methods on two benchmarks and one real-world biomedical publications dataset, showcasing the potential of our approach.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowadays Knowledge Graphs constitute a mainstream approach for the
representation of relational information on big heterogeneous data, however,
they may contain a big amount of imputed noise when constructed automatically.
To address this problem, different error detection methodologies have been
proposed, mainly focusing on path ranking and representation learning. This
work presents various mainstream approaches and proposes a hybrid and modular
methodology for the task. We compare different methods on two benchmarks and
one real-world biomedical publications dataset, showcasing the potential of our
approach and providing insights on graph embeddings when dealing with noisy
Knowledge Graphs.
Related papers
- Towards Graph Prompt Learning: A Survey and Beyond [38.55555996765227]
Large-scale "pre-train and prompt learning" paradigms have demonstrated remarkable adaptability.
This survey categorizes over 100 relevant works in this field, summarizing general design principles and the latest applications.
arXiv Detail & Related papers (2024-08-26T06:36:42Z) - Few-Shot Learning on Graphs: from Meta-learning to Pre-training and
Prompting [56.25730255038747]
This survey endeavors to synthesize recent developments, provide comparative insights, and identify future directions.
We systematically categorize existing studies into three major families: meta-learning approaches, pre-training approaches, and hybrid approaches.
We analyze the relationships among these methods and compare their strengths and limitations.
arXiv Detail & Related papers (2024-02-02T14:32:42Z) - GRAM: An Interpretable Approach for Graph Anomaly Detection using Gradient Attention Maps [26.011499804523808]
We propose a novel approach to graph anomaly detection that leverages the power of interpretability to enhance performance.
Our method extracts an attention map derived from gradients of graph neural networks, which serves as a basis for scoring anomalies.
We extensively evaluate our approach against state-of-the-art graph anomaly detection techniques on real-world graph classification and wireless network datasets.
arXiv Detail & Related papers (2023-11-10T16:14:21Z) - ALEX: Towards Effective Graph Transfer Learning with Noisy Labels [11.115297917940829]
We introduce a novel technique termed Balance Alignment and Information-aware Examination (ALEX) to address the problem of graph transfer learning.
ALEX first employs singular value decomposition to generate different views with crucial structural semantics, which help provide robust node representations.
Building on this foundation, an adversarial domain discriminator is incorporated for the implicit domain alignment of complex multi-modal distributions.
arXiv Detail & Related papers (2023-09-26T04:59:49Z) - A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and
Future Directions [64.84521350148513]
Graphs represent interconnected structures prevalent in a myriad of real-world scenarios.
Effective graph analytics, such as graph learning methods, enables users to gain profound insights from graph data.
However, these methods often suffer from data imbalance, a common issue in graph data where certain segments possess abundant data while others are scarce.
This necessitates the emerging field of imbalanced learning on graphs, which aims to correct these data distribution skews for more accurate and representative learning outcomes.
arXiv Detail & Related papers (2023-08-26T09:11:44Z) - Bures-Wasserstein Means of Graphs [60.42414991820453]
We propose a novel framework for defining a graph mean via embeddings in the space of smooth graph signal distributions.
By finding a mean in this embedding space, we can recover a mean graph that preserves structural information.
We establish the existence and uniqueness of the novel graph mean, and provide an iterative algorithm for computing it.
arXiv Detail & Related papers (2023-05-31T11:04:53Z) - High-order Multi-view Clustering for Generic Data [15.764819403555512]
Graph-based multi-view clustering has achieved better performance than most non-graph approaches.
We introduce an approach called high-order multi-view clustering (HMvC) to explore the topology structure information of generic data.
arXiv Detail & Related papers (2022-09-22T07:49:38Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - Generative and Contrastive Self-Supervised Learning for Graph Anomaly
Detection [14.631674952942207]
We propose a novel method, Self-Supervised Learning for Graph Anomaly Detection (SL-GAD)
Our method constructs different contextual subgraphs based on a target node and employs two modules, generative attribute regression and multi-view contrastive learning for anomaly detection.
We conduct extensive experiments on six benchmark datasets and the results demonstrate that our method outperforms state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2021-08-23T02:15:21Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
We present a comprehensive study on graph embedded few-shot learning.
We introduce a graph regularization approach that allows a deeper understanding of the impact of incorporating graph information between labels.
Our approach improves the performance of strong base learners by up to 2% on Mini-ImageNet and 6.7% on ImageNet-FS.
arXiv Detail & Related papers (2021-02-14T05:28:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.