論文の概要: Stochastic Runge-Kutta methods and adaptive SGD-G2 stochastic gradient
descent
- arxiv url: http://arxiv.org/abs/2002.09304v1
- Date: Thu, 20 Feb 2020 15:45:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-30 07:35:35.710308
- Title: Stochastic Runge-Kutta methods and adaptive SGD-G2 stochastic gradient
descent
- Title(参考訳): 確率ルンゲ・クッタ法と適応SGD-G2確率勾配勾配
- Authors: Imen Ayadi (CEREMADE), Gabriel Turinici (CEREMADE)
- Abstract要約: 本研究では,2次ランゲ・クッタ法を導入し,損失関数の最小化のための一貫した手順を導出することを示す。
さらに、適応的なフレームワークに結合して、SGDの学習率を自動的に調整するグラディエントDescent(SGD)を組み込むことができる。
適応型SGDはSGD-G2と呼ばれ、標準データセット上でうまくテストされている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The minimization of the loss function is of paramount importance in deep
neural networks. On the other hand, many popular optimization algorithms have
been shown to correspond to some evolution equation of gradient flow type.
Inspired by the numerical schemes used for general evolution equations we
introduce a second order stochastic Runge Kutta method and show that it yields
a consistent procedure for the minimization of the loss function. In addition
it can be coupled, in an adaptive framework, with a Stochastic Gradient Descent
(SGD) to adjust automatically the learning rate of the SGD, without the need of
any additional information on the Hessian of the loss functional. The adaptive
SGD, called SGD-G2, is successfully tested on standard datasets.
- Abstract(参考訳): 損失関数の最小化はディープニューラルネットワークにおいて極めて重要である。
一方、多くの一般的な最適化アルゴリズムは勾配流型の進化方程式に対応することが示されている。
一般進化方程式で用いられる数値スキームに着想を得て、二階確率ルンゲ・クッタ法を導入し、損失関数の最小化のための一貫した手順を導出することを示す。
さらに、適応的なフレームワークでSGD(Stochastic Gradient Descent)と結合することで、損失関数のHessianに関する追加情報を必要とせずに、SGDの学習速度を自動的に調整することができる。
適応型SGDはSGD-G2と呼ばれ、標準データセット上でうまくテストされている。
関連論文リスト
- Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Variants of SGD for Lipschitz Continuous Loss Functions in Low-Precision Environments [6.418044102466421]
損失関数の勾配の近似のみを計算し、SGDステップ自体の誤差を計算できると仮定する。
SGDの異なる変種を経験的にテストし、2つの画像認識タスクに対してSGDと比較してテストセットの精度が改善された。
論文 参考訳(メタデータ) (2022-11-09T03:04:34Z) - NAG-GS: Semi-Implicit, Accelerated and Robust Stochastic Optimizer [45.47667026025716]
2つの重要な要素に依存した、新しく、堅牢で、加速された反復を提案する。
NAG-GSと呼ばれる手法の収束と安定性は、まず広範に研究されている。
我々は、NAG-arityが、重量減衰を伴う運動量SGDや機械学習モデルのトレーニングのためのAdamWといった最先端の手法と競合していることを示す。
論文 参考訳(メタデータ) (2022-09-29T16:54:53Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
勾配降下(SGD)により最適化された高次元におけるランダム特徴(RF)回帰特性について検討する。
本研究では, RF回帰の高精度な非漸近誤差境界を, 定常および適応的なステップサイズSGD設定の下で導出する。
理論的にも経験的にも二重降下現象を観察する。
論文 参考訳(メタデータ) (2021-10-13T17:47:39Z) - Cogradient Descent for Dependable Learning [64.02052988844301]
双線形最適化問題に対処するために,CoGDアルゴリズムに基づく信頼度の高い学習法を提案する。
CoGDは、ある変数がスパーシティ制約を持つ場合の双線形問題を解くために導入された。
また、特徴と重みの関連を分解するためにも使用できるため、畳み込みニューラルネットワーク(CNN)をより良く訓練するための我々の手法をさらに一般化することができる。
論文 参考訳(メタデータ) (2021-06-20T04:28:20Z) - The Sobolev Regularization Effect of Stochastic Gradient Descent [8.193914488276468]
平坦なミニマはモデル関数の勾配を正則化するので、平坦なミニマの優れた性能が説明できる。
また、勾配雑音の高次モーメントについても検討し、グローバル・ミニマ周辺でのSGDの線形解析により、グラディエント・ダセント(SGD)がこれらのモーメントに制約を課す傾向があることを示す。
論文 参考訳(メタデータ) (2021-05-27T21:49:21Z) - Direction Matters: On the Implicit Bias of Stochastic Gradient Descent
with Moderate Learning Rate [105.62979485062756]
本稿では,中等度学習におけるSGDの特定の正規化効果を特徴付けることを試みる。
SGDはデータ行列の大きな固有値方向に沿って収束し、GDは小さな固有値方向に沿って収束することを示す。
論文 参考訳(メタデータ) (2020-11-04T21:07:52Z) - Balancing Rates and Variance via Adaptive Batch-Size for Stochastic
Optimization Problems [120.21685755278509]
本研究は,ステップサイズの減衰が正確な収束に必要であるという事実と,一定のステップサイズがエラーまでの時間でより速く学習するという事実のバランスをとることを目的とする。
ステップサイズのミニバッチを最初から修正するのではなく,パラメータを適応的に進化させることを提案する。
論文 参考訳(メタデータ) (2020-07-02T16:02:02Z) - Dynamical mean-field theory for stochastic gradient descent in Gaussian
mixture classification [25.898873960635534]
高次元景観を分類する単一層ニューラルネットワークにおける勾配降下(SGD)の閉学習ダイナミクスを解析する。
連続次元勾配流に拡張可能なプロトタイププロセスを定義する。
フルバッチ限界では、標準勾配流を回復する。
論文 参考訳(メタデータ) (2020-06-10T22:49:41Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
適応アルゴリズムは勾配の歴史を用いて勾配を更新し、深層ニューラルネットワークのトレーニングにおいてユビキタスである。
本稿では,非コンケーブ最小値問題に対するOptimisticOAアルゴリズムの変種を解析する。
実験の結果,適応型GAN非適応勾配アルゴリズムは経験的に観測可能であることがわかった。
論文 参考訳(メタデータ) (2019-12-26T22:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。