Using dark states to charge and stabilise open quantum batteries
- URL: http://arxiv.org/abs/2002.10044v2
- Date: Tue, 1 Sep 2020 02:24:36 GMT
- Title: Using dark states to charge and stabilise open quantum batteries
- Authors: James Q. Quach and William J. Munro
- Abstract summary: We introduce an open quantum battery protocol using dark states to achieve both superextensive capacity and power density.
We show that the enhanced capacity and power is correlated with entanglement.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce an open quantum battery protocol using dark states to achieve
both superextensive capacity and power density, with non-interacting spins
coupled to a reservoir. Further, our power density actually scales with the of
number of spins $N$ in the battery. We show that the enhanced capacity and
power is correlated with entanglement. Whilst connected to the charger, the
charged state of the battery is a steady state, stabilized through quantum
interference in the open system.
Related papers
- Second Law of Entanglement Manipulation with Entanglement Battery [41.94295877935867]
A central question since the beginning of quantum information science is how two distant parties can convert one entangled state into another.
It has been conjectured that entangled state transformations could be executed reversibly in an regime, mirroring the nature of Carnot cycles in classical thermodynamics.
We investigate the concept of an entanglement battery, an auxiliary quantum system that facilitates quantum state transformations without a net loss of entanglement.
arXiv Detail & Related papers (2024-05-17T07:55:04Z) - Coupled vertical double quantum dots at single-hole occupancy [37.69303106863453]
We control vertical double quantum dots confined in a double quantum well, silicon-germanium heterostructure.
We sense individual charge transitions with a single-hole transistor.
tuning the vertical double quantum dot to the (1,1) charge state confines a single hole in each quantum well beneath a single plunger gate.
arXiv Detail & Related papers (2024-01-15T14:46:40Z) - Three-level Dicke quantum battery [0.8602553195689513]
We propose a three-level Dicke QB and investigate its charging process.
We find that the locked energy is positively related to the entanglement between the charger and the battery.
arXiv Detail & Related papers (2023-08-02T14:53:40Z) - Beneficial and detrimental entanglement for quantum battery charging [0.0]
We assess the potential advantage of using highly entangled quantum states between the initial and final states of the charging protocol.
We show that the quantum state advantage of battery charging, defined as the power obtainable for given quantum speed limit and battery energy gap, is not an entanglement monotone.
arXiv Detail & Related papers (2023-03-14T12:27:46Z) - Quantum battery charging by non-equilibrium steady-state currents [0.0]
We present an analysis of the availability and maximum extractable work of quantum batteries in the presence of charge and/or heat steady-state currents.
arXiv Detail & Related papers (2023-02-28T14:56:01Z) - Quantum battery in nonequilibrium reservoirs [3.013260458524006]
We investigate a quantum battery system in which the coupled two-level charger and battery are immersed in nonequilbrium boson or fermion reservoirs.
In the non-resonance driving regime, the efficiency of the quantum battery can be optimized by the compensation mechanism for both the boson and fermion reservoirs.
arXiv Detail & Related papers (2022-10-17T06:36:02Z) - Quantum battery based on superabsorption [0.0]
We propose a quantum battery with a charger system composed of $N$ qubits by utilizing a collective effect called a superabsorption.
Our results open the path to ultra-fast charging of a quantum battery.
arXiv Detail & Related papers (2022-05-08T09:35:59Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Precision tomography of a three-qubit donor quantum processor in silicon [38.42250061908039]
Nuclear spins were among the first physical platforms to be considered for quantum information processing.
We demonstrate universal quantum logic operations using a pair of ion-implanted 31P donor nuclei in a silicon nanoelectronic device.
arXiv Detail & Related papers (2021-06-06T10:30:38Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.