Periodically driven many-body quantum battery
- URL: http://arxiv.org/abs/2112.10451v2
- Date: Thu, 21 Apr 2022 06:19:52 GMT
- Title: Periodically driven many-body quantum battery
- Authors: Saikat Mondal, Sourav Bhattacharjee
- Abstract summary: We find that resonance tunneling can lead to a higher transfer of energy to the battery and better stability of the stored energy at specific drive frequencies.
We do not find any quantum advantage in the charging power, thus demonstrating that global charging is only a necessary and not sufficient condition for achieving quantum advantage.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore the charging of a quantum battery based on spin systems through
periodic modulation of a transverse-field like Ising Hamiltonian. In the
integrable limit, we find that resonance tunneling can lead to a higher
transfer of energy to the battery and better stability of the stored energy at
specific drive frequencies. When the integrability is broken in the presence of
an additional longitudinal field, we find that the effective Floquet
Hamiltonian contains terms which may lead to a global charging of the battery.
However, we do not find any quantum advantage in the charging power, thus
demonstrating that global charging is only a necessary and not sufficient
condition for achieving quantum advantage.
Related papers
- Genuine quantum advantage in non-linear bosonic quantum batteries [0.4999814847776097]
We propose a deceptively simple quantum battery model that displays a genuine quantum advantage, saturating the quantum speed limit.
We first present the model, then certify the genuine quantum advantage, and briefly discuss how the battery can be fabricated through the use of superconducting circuits.
arXiv Detail & Related papers (2024-09-13T08:31:35Z) - Local-projective-measurement-enhanced quantum battery capacity [13.61700291107261]
capacity is an important indicator for a battery.
We study the enhancement of the battery capacity under local projective measurements on a subsystem of the quantum state.
arXiv Detail & Related papers (2024-05-06T01:11:25Z) - Energetics of the dissipative quantum oscillator [22.76327908349951]
We discuss some aspects of the energetics of a quantum Brownian particle placed in a harmonic trap.
Based on the fluctuation-dissipation theorem, we analyze two distinct notions of thermally-averaged energy.
We generalize our analysis to the case of the three-dimensional dissipative magneto-oscillator.
arXiv Detail & Related papers (2023-10-05T15:18:56Z) - On Simultaneous Information and Energy Transmission through Quantum Channels [15.387256204743407]
We introduce the quantum-classical analogue of the capacity-power function.
We generalize results in classical information theory for transmitting classical information through noisy channels.
arXiv Detail & Related papers (2023-09-24T16:46:47Z) - Beneficial and detrimental entanglement for quantum battery charging [0.0]
We assess the potential advantage of using highly entangled quantum states between the initial and final states of the charging protocol.
We show that the quantum state advantage of battery charging, defined as the power obtainable for given quantum speed limit and battery energy gap, is not an entanglement monotone.
arXiv Detail & Related papers (2023-03-14T12:27:46Z) - Quantum battery charging by non-equilibrium steady-state currents [0.0]
We present an analysis of the availability and maximum extractable work of quantum batteries in the presence of charge and/or heat steady-state currents.
arXiv Detail & Related papers (2023-02-28T14:56:01Z) - Vacuum enhanced charging of a quantum battery [0.0]
We show how a purely quantum effect related to the vacuum of the electromagnetic field can enhance the charging of a quantum battery.
In particular, we demonstrate how an anti-Jaynes Cummings interaction can be used to increase the stored energy of an effective two-level atom.
arXiv Detail & Related papers (2023-01-31T13:54:14Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - The quantum Otto cycle in a superconducting cavity in the non-adiabatic
regime [62.997667081978825]
We analyze the efficiency of the quantum Otto cycle applied to a superconducting cavity.
It is shown that, in a non-adiabatic regime, the efficiency of the quantum cycle is affected by the dynamical Casimir effect.
arXiv Detail & Related papers (2021-11-30T11:47:33Z) - Optimal charging of a superconducting quantum battery [13.084212951440033]
We report the experimental realization of a quantum battery based on superconducting qubits.
Our model explores dark and bright states to achieve stable and powerful charging processes, respectively.
Our results pave the way for proposals of new superconducting circuits able to store extractable work for further usage.
arXiv Detail & Related papers (2021-08-09T18:53:07Z) - Quantum speed-up in collisional battery charging [0.0]
We present a collision model for the charging of a quantum battery by identical nonequilibrium qubit units.
We show that coherent protocols can yield higher charging power than any possible incoherent strategy.
arXiv Detail & Related papers (2021-05-05T04:28:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.