論文の概要: Biased Stochastic Gradient Descent for Conditional Stochastic
Optimization
- arxiv url: http://arxiv.org/abs/2002.10790v1
- Date: Tue, 25 Feb 2020 10:57:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-28 21:11:03.152615
- Title: Biased Stochastic Gradient Descent for Conditional Stochastic
Optimization
- Title(参考訳): 条件付き確率的最適化のためのバイアス付き確率勾配降下
- Authors: Yifan Hu, Siqi Zhang, Xin Chen, Niao He
- Abstract要約: 条件最適化(CSO)はメタラーニングや因果推論から不変学習まで様々な応用をカバーしている。
本稿では,BSGDアルゴリズムを提案し,異なる構造条件下でのバイアス分散トレードオフについて検討する。
- 参考スコア(独自算出の注目度): 26.067067973796767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conditional Stochastic Optimization (CSO) covers a variety of applications
ranging from meta-learning and causal inference to invariant learning. However,
constructing unbiased gradient estimates in CSO is challenging due to the
composition structure. As an alternative, we propose a biased stochastic
gradient descent (BSGD) algorithm and study the bias-variance tradeoff under
different structural assumptions. We establish the sample complexities of BSGD
for strongly convex, convex, and weakly convex objectives, under smooth and
non-smooth conditions. We also provide matching lower bounds of BSGD for convex
CSO objectives. Extensive numerical experiments are conducted to illustrate the
performance of BSGD on robust logistic regression, model-agnostic meta-learning
(MAML), and instrumental variable regression (IV).
- Abstract(参考訳): 条件確率最適化(CSO)はメタラーニングや因果推論から不変学習まで様々な応用をカバーしている。
しかし, 組成構造のため, CSOにおける非バイアス勾配推定の構成は困難である。
代替として、バイアス付き確率勾配勾配勾配(BSGD)アルゴリズムを提案し、異なる構造仮定の下でバイアス分散トレードオフを研究する。
我々は, 滑らかで非滑らかな条件下で, 強凸, 凸, 弱凸対象に対するBSGDの試料複合体を確立する。
また, 凸CSO目標に対するBSGDの下限の一致も提供する。
ロバストロジスティック回帰、モデル非依存メタラーニング(maml)、インストゥルメンタル変数回帰(iv)におけるbsgdの性能を示すために、広範な数値実験を行った。
関連論文リスト
- Non-asymptotic Analysis of Biased Adaptive Stochastic Approximation [0.8192907805418583]
偏りのある勾配は滑らかな非函数に対する臨界点に収束することを示す。
適切なチューニングを行うことで,バイアスの効果を低減できることを示す。
論文 参考訳(メタデータ) (2024-02-05T10:17:36Z) - Robust Stochastic Optimization via Gradient Quantile Clipping [6.2844649973308835]
グラディエントDescent(SGD)のための量子クリッピング戦略を導入する。
通常のクリッピングチェーンとして、グラデーション・ニュー・アウトリージを使用します。
本稿では,Huberiles を用いたアルゴリズムの実装を提案する。
論文 参考訳(メタデータ) (2023-09-29T15:24:48Z) - Enhancing Generalization of Universal Adversarial Perturbation through
Gradient Aggregation [40.18851174642427]
深部ニューラルネットワークは普遍的逆境摂動(UAP)に脆弱である
本稿では,一般化の観点から,UAP生成手法の真剣なジレンマについて検討する。
グラディエント・アグリゲーション(SGA)と呼ばれるシンプルで効果的な手法を提案する。
SGAは勾配の消失を緩和し、局所最適度の低下から同時に逃れる。
論文 参考訳(メタデータ) (2023-08-11T08:44:58Z) - Adaptive Zeroth-Order Optimisation of Nonconvex Composite Objectives [1.7640556247739623]
ゼロ階エントロピー合成目的のためのアルゴリズムを解析し,次元依存性に着目した。
これは、ミラー降下法と推定類似関数を用いて、決定セットの低次元構造を利用して達成される。
勾配を改善するため、Rademacherに基づく古典的なサンプリング法を置き換え、ミニバッチ法が非ユークリ幾何学に対処することを示す。
論文 参考訳(メタデータ) (2022-08-09T07:36:25Z) - Clipped Stochastic Methods for Variational Inequalities with
Heavy-Tailed Noise [64.85879194013407]
単調なVIPと非単調なVIPの解法における信頼度に対数的依存を持つ最初の高確率結果が証明された。
この結果は光尾の場合で最もよく知られたものと一致し,非単調な構造問題に新鮮である。
さらに,多くの実用的な定式化の勾配雑音が重く,クリッピングによりSEG/SGDAの性能が向上することを示す。
論文 参考訳(メタデータ) (2022-06-02T15:21:55Z) - The Power of Adaptivity in SGD: Self-Tuning Step Sizes with Unbounded
Gradients and Affine Variance [46.15915820243487]
AdaGrad-Normは$mathcalOleftのオーダー最適収束を示す。
AdaGrad-Normは$mathcalOleftのオーダー最適収束を示す。
論文 参考訳(メタデータ) (2022-02-11T17:37:54Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - Efficient Semi-Implicit Variational Inference [65.07058307271329]
効率的でスケーラブルな半単純外挿 (SIVI) を提案する。
本手法はSIVIの証拠を低勾配値の厳密な推測にマッピングする。
論文 参考訳(メタデータ) (2021-01-15T11:39:09Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
適応アルゴリズムは勾配の歴史を用いて勾配を更新し、深層ニューラルネットワークのトレーニングにおいてユビキタスである。
本稿では,非コンケーブ最小値問題に対するOptimisticOAアルゴリズムの変種を解析する。
実験の結果,適応型GAN非適応勾配アルゴリズムは経験的に観測可能であることがわかった。
論文 参考訳(メタデータ) (2019-12-26T22:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。