論文の概要: Biased Stochastic First-Order Methods for Conditional Stochastic Optimization and Applications in Meta Learning
- arxiv url: http://arxiv.org/abs/2002.10790v2
- Date: Sun, 2 Jun 2024 12:38:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 00:04:47.859411
- Title: Biased Stochastic First-Order Methods for Conditional Stochastic Optimization and Applications in Meta Learning
- Title(参考訳): 条件付き確率最適化のためのバイアス付き確率一階法とそのメタ学習への応用
- Authors: Yifan Hu, Siqi Zhang, Xin Chen, Niao He,
- Abstract要約: 条件最適化問題に対するバイアス勾配勾配勾配(BSGD)を提案する。
下界解析により,BSGDは一般凸対象の非目的に対して改善できないことが示された。
この特別な設定のために、下界にマッチするバイアスドスパイダーブースト (BSpiderBoost) と呼ばれる加速アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 24.12941820827126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conditional stochastic optimization covers a variety of applications ranging from invariant learning and causal inference to meta-learning. However, constructing unbiased gradient estimators for such problems is challenging due to the composition structure. As an alternative, we propose a biased stochastic gradient descent (BSGD) algorithm and study the bias-variance tradeoff under different structural assumptions. We establish the sample complexities of BSGD for strongly convex, convex, and weakly convex objectives under smooth and non-smooth conditions. Our lower bound analysis shows that the sample complexities of BSGD cannot be improved for general convex objectives and nonconvex objectives except for smooth nonconvex objectives with Lipschitz continuous gradient estimator. For this special setting, we propose an accelerated algorithm called biased SpiderBoost (BSpiderBoost) that matches the lower bound complexity. We further conduct numerical experiments on invariant logistic regression and model-agnostic meta-learning to illustrate the performance of BSGD and BSpiderBoost.
- Abstract(参考訳): 条件確率最適化は、不変学習や因果推論からメタ学習まで、様々な応用をカバーしている。
しかし、そのような問題に対する非バイアス勾配推定器の構築は、構成構造上困難である。
代替として、バイアス付き確率勾配勾配勾配(BSGD)アルゴリズムを提案し、異なる構造仮定の下でバイアス分散トレードオフを研究する。
滑らかで非滑らかな条件下では, 強凸, 凸, 弱凸の目的に対してBSGDの試料複合体を確立する。
リプシッツ連続勾配推定器を用いたスムーズな非凸目的物を除いて、BSGDのサンプル複雑度は一般凸目的物や非凸目的物では改善できないことを示す。
この特別な設定のために, バイアスドスパイダーブースト(BSpiderBoost, BSpiderBoost)と呼ばれる, 低境界複雑性に対応する高速化アルゴリズムを提案する。
さらに,BSGDとBSpiderBoostの性能を示すために,不変ロジスティック回帰とモデル非依存メタラーニングの数値実験を行った。
関連論文リスト
- Non-asymptotic Analysis of Biased Adaptive Stochastic Approximation [0.8192907805418583]
偏りのある勾配は滑らかな非函数に対する臨界点に収束することを示す。
適切なチューニングを行うことで,バイアスの効果を低減できることを示す。
論文 参考訳(メタデータ) (2024-02-05T10:17:36Z) - Robust Stochastic Optimization via Gradient Quantile Clipping [6.2844649973308835]
グラディエントDescent(SGD)のための量子クリッピング戦略を導入する。
通常のクリッピングチェーンとして、グラデーション・ニュー・アウトリージを使用します。
本稿では,Huberiles を用いたアルゴリズムの実装を提案する。
論文 参考訳(メタデータ) (2023-09-29T15:24:48Z) - Enhancing Generalization of Universal Adversarial Perturbation through
Gradient Aggregation [40.18851174642427]
深部ニューラルネットワークは普遍的逆境摂動(UAP)に脆弱である
本稿では,一般化の観点から,UAP生成手法の真剣なジレンマについて検討する。
グラディエント・アグリゲーション(SGA)と呼ばれるシンプルで効果的な手法を提案する。
SGAは勾配の消失を緩和し、局所最適度の低下から同時に逃れる。
論文 参考訳(メタデータ) (2023-08-11T08:44:58Z) - Adaptive Zeroth-Order Optimisation of Nonconvex Composite Objectives [1.7640556247739623]
ゼロ階エントロピー合成目的のためのアルゴリズムを解析し,次元依存性に着目した。
これは、ミラー降下法と推定類似関数を用いて、決定セットの低次元構造を利用して達成される。
勾配を改善するため、Rademacherに基づく古典的なサンプリング法を置き換え、ミニバッチ法が非ユークリ幾何学に対処することを示す。
論文 参考訳(メタデータ) (2022-08-09T07:36:25Z) - Clipped Stochastic Methods for Variational Inequalities with
Heavy-Tailed Noise [64.85879194013407]
単調なVIPと非単調なVIPの解法における信頼度に対数的依存を持つ最初の高確率結果が証明された。
この結果は光尾の場合で最もよく知られたものと一致し,非単調な構造問題に新鮮である。
さらに,多くの実用的な定式化の勾配雑音が重く,クリッピングによりSEG/SGDAの性能が向上することを示す。
論文 参考訳(メタデータ) (2022-06-02T15:21:55Z) - The Power of Adaptivity in SGD: Self-Tuning Step Sizes with Unbounded
Gradients and Affine Variance [46.15915820243487]
AdaGrad-Normは$mathcalOleftのオーダー最適収束を示す。
AdaGrad-Normは$mathcalOleftのオーダー最適収束を示す。
論文 参考訳(メタデータ) (2022-02-11T17:37:54Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - Efficient Semi-Implicit Variational Inference [65.07058307271329]
効率的でスケーラブルな半単純外挿 (SIVI) を提案する。
本手法はSIVIの証拠を低勾配値の厳密な推測にマッピングする。
論文 参考訳(メタデータ) (2021-01-15T11:39:09Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
適応アルゴリズムは勾配の歴史を用いて勾配を更新し、深層ニューラルネットワークのトレーニングにおいてユビキタスである。
本稿では,非コンケーブ最小値問題に対するOptimisticOAアルゴリズムの変種を解析する。
実験の結果,適応型GAN非適応勾配アルゴリズムは経験的に観測可能であることがわかった。
論文 参考訳(メタデータ) (2019-12-26T22:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。