論文の概要: Target Detection, Tracking and Avoidance System for Low-cost UAVs using
AI-Based Approaches
- arxiv url: http://arxiv.org/abs/2002.12461v1
- Date: Thu, 27 Feb 2020 21:58:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-28 08:33:55.594971
- Title: Target Detection, Tracking and Avoidance System for Low-cost UAVs using
AI-Based Approaches
- Title(参考訳): aiを用いた低コストuavの目標検出・追跡・回避システム
- Authors: Vinorth Varatharasan, Alice Shuang Shuang Rao, Eric Toutounji,
Ju-Hyeon Hong, Hyo-Sang Shin
- Abstract要約: AIベースのアプローチを用いて,低コストUAV飛行制御装置を対象とした目標検出・追跡・回避システムを開発した。
提案したシステムは、同盟国であるUAVが敵の予想外のUAVを避けたり、網で追跡して身を守ることができる。
- 参考スコア(独自算出の注目度): 1.5836913530330785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An onboard target detection, tracking and avoidance system has been developed
in this paper, for low-cost UAV flight controllers using AI-Based approaches.
The aim of the proposed system is that an ally UAV can either avoid or track an
unexpected enemy UAV with a net to protect itself. In this point of view, a
simple and robust target detection, tracking and avoidance system is designed.
Two open-source tools were used for the aim: a state-of-the-art object
detection technique called SSD and an API for MAVLink compatible systems called
MAVSDK. The MAVSDK performs velocity control when a UAV is detected so that the
manoeuvre is done simply and efficiently. The proposed system was verified with
Software in the loop (SITL) and Hardware in the loop (HITL) simulators. The
simplicity of this algorithm makes it innovative, and therefore it should be
used in future applications needing robust performances with low-cost hardware
such as delivery drone applications.
- Abstract(参考訳): 本稿では,aiを用いた低コストuav飛行制御装置のためのオンボードターゲット検出・追跡・回避システムを開発した。
提案システムの目的は、味方のUAVがネットで敵のUAVを避けたり追跡したりできることである。
この観点からは、シンプルでロバストな目標検出・追跡・回避システムを設計する。
SSDと呼ばれる最先端のオブジェクト検出技術と、MAVSDKと呼ばれるMAVLink互換システムのためのAPIである。
MAVSDKは、UAVの検出時に速度制御を行い、操作を簡単かつ効率的に行う。
提案システムは,SITL (Software in the loop) とHITL (Hardware in the loop) シミュレータを用いて検証した。
このアルゴリズムの単純さは革新的であり、配送ドローンアプリケーションのような低コストハードウェアで堅牢な性能を必要とする将来のアプリケーションで使われるべきである。
関連論文リスト
- Real-Time Detection for Small UAVs: Combining YOLO and Multi-frame Motion Analysis [0.8971132850029493]
無人航空機(UAV)検出技術は、セキュリティリスクの軽減と、軍用および民間の双方のアプリケーションにおけるプライバシーの保護において重要な役割を担っている。
従来の検出手法は、長距離で非常に小さなピクセルを持つUAVターゲットを識別する上で重要な課題に直面している。
我々は,YOLO(You Only Look Once)オブジェクト検出と多フレームモーション検出を併用したGlobal-Local YOLO-Motion(GL-YOMO)検出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-10T14:30:50Z) - UAVDB: Trajectory-Guided Adaptable Bounding Boxes for UAV Detection [0.03464344220266879]
パッチ強度収束(Patch Intensity Convergence、PIC)技術は、手動ラベリングなしでUAV検出のための高忠実なバウンディングボックスを生成する。
この技術は、UAV検出に特化した専用データベースであるUAVDBの基礎となる。
我々は,最先端(SOTA)YOLO系列検出器を用いてUAVDBをベンチマークし,総合的な性能解析を行った。
論文 参考訳(メタデータ) (2024-09-09T13:27:53Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
接続された自動運転車(CAV)は、交通事故におけるヒューマンエラーを低減し、道路効率を向上し、様々なタスクを実行する。これらのメリットを享受するためには、CAVが目標とする目的地へ自律的にナビゲートする必要がある。
本稿では,通信理論,制御理論,機械学習の収束を利用して,効果的なCAVナビゲーションを実現する手法を提案する。
論文 参考訳(メタデータ) (2023-07-05T21:38:36Z) - Evidential Detection and Tracking Collaboration: New Problem, Benchmark
and Algorithm for Robust Anti-UAV System [56.51247807483176]
無人航空機(UAV)は輸送、監視、軍事など多くの地域で広く使われている。
従来は、UAVの先行情報が常に提供されていた追跡問題として、このようなアンチUAVタスクを単純化していた。
本稿では,従来のUAV情報を含まない複雑な場面において,UAVの認識を特徴とする新しい実用的対UAV問題を初めて定式化する。
論文 参考訳(メタデータ) (2023-06-27T19:30:23Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
複雑なGPSを用いた複雑な環境において,UAVのチームが協調して目標を探索し,発見するための枠組みを提案する。
UAVのチームは自律的にナビゲートし、探索し、検出し、既知の地図で散らばった環境でターゲットを見つける。
その結果, 提案方式は, 時間的コスト, 調査対象地域の割合, 捜索・救助ミッションの成功率などの面で改善されていることがわかった。
論文 参考訳(メタデータ) (2021-07-19T12:54:04Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z) - Attention-based Reinforcement Learning for Real-Time UAV Semantic
Communication [53.46235596543596]
移動地利用者に対する空対地超信頼性・低遅延通信(URLLC)の問題点について検討する。
グラフアテンション交換ネットワーク(GAXNet)を用いたマルチエージェント深層強化学習フレームワークを提案する。
GAXNetは、最先端のベースラインフレームワークと比較して、0.0000001エラー率で6.5倍のレイテンシを実現している。
論文 参考訳(メタデータ) (2021-05-22T12:43:25Z) - Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking [59.06167734555191]
Unmanned Aerial Vehicle (UAV)は、商業とレクリエーションの両方に多くの応用を提供している。
我々は、UAVを追跡し、位置や軌道などの豊富な情報を提供するという課題を考察する。
300以上のビデオペアが580k以上の手動で注釈付きバウンディングボックスを含むデータセット、Anti-UAVを提案します。
論文 参考訳(メタデータ) (2021-01-21T07:00:15Z) - UAV Autonomous Localization using Macro-Features Matching with a CAD
Model [0.0]
本稿では,マクロな特徴の検出とマッチングに依存する,オフライン,ポータブル,リアルタイムな室内UAVローカライゼーション手法を提案する。
この研究の主な貢献は、UAVキャプチャー画像からマクロ特徴記述ベクトルをリアルタイムに作成することであり、同時にコンピュータ支援設計(CAD)モデルからオフラインの既存ベクトルと一致する。
提案システムの有効性と精度をシミュレーションおよび試作実験により評価した。
論文 参考訳(メタデータ) (2020-01-30T23:49:15Z) - Dynamic Radar Network of UAVs: A Joint Navigation and Tracking Approach [36.587096293618366]
新たな問題は、建物の後ろに隠れている無人小型無人航空機(UAV)を追跡することである。
本稿では,悪意のある標的のリアルタイムかつ高精度な追跡のためのUAVの動的レーダネットワークを提案する。
論文 参考訳(メタデータ) (2020-01-13T23:23:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。