論文の概要: System identification using Bayesian neural networks with nonparametric
noise models
- arxiv url: http://arxiv.org/abs/2104.12119v1
- Date: Sun, 25 Apr 2021 09:49:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-27 14:27:20.276870
- Title: System identification using Bayesian neural networks with nonparametric
noise models
- Title(参考訳): 非パラメトリックノイズモデルを用いたベイズニューラルネットワークを用いたシステム同定
- Authors: Christos Merkatas and Simo S\"arkk\"a
- Abstract要約: 離散時間非線形ランダムダイナミクス系におけるシステム同定のための非パラメトリックアプローチを提案する。
後部推論用ギブスサンプリング器を提案し, シミュレーションおよび実時間時系列でその有効性を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: System identification is of special interest in science and engineering. This
article is concerned with a system identification problem arising in stochastic
dynamic systems, where the aim is to estimating the parameters of a system
along with its unknown noise processes. In particular, we propose a Bayesian
nonparametric approach for system identification in discrete time nonlinear
random dynamical systems assuming only the order of the Markov process is
known. The proposed method replaces the assumption of Gaussian distributed
error components with a highly flexible family of probability density functions
based on Bayesian nonparametric priors. Additionally, the functional form of
the system is estimated by leveraging Bayesian neural networks which also leads
to flexible uncertainty quantification. Asymptotically on the number of hidden
neurons, the proposed model converges to full nonparametric Bayesian regression
model. A Gibbs sampler for posterior inference is proposed and its
effectiveness is illustrated in simulated and real time series.
- Abstract(参考訳): システム識別は科学と工学に特に関心がある。
本論は, 確率力学系において発生するシステム同定問題に関するもので, 未知の雑音過程とともにシステムのパラメータを推定することを目的としている。
特に,マルコフ過程の順序のみを仮定した離散時間非線形ランダム力学系におけるシステム同定のためのベイズ的非パラメトリック手法を提案する。
提案手法は, ガウス分布誤差成分の仮定をベイズ非パラメトリック事前値に基づく高柔軟性確率密度関数群に置き換えるものである。
さらに、システムの機能形式はベイズニューラルネットワークを利用して推定され、柔軟性のある不確かさの定量化につながる。
隠れニューロンの数に漸近して、提案モデルは完全な非パラメトリックベイズ回帰モデルに収束する。
後部推論用ギブスサンプリング器を提案し,シミュレーションおよび実時間時系列でその有効性を示した。
関連論文リスト
- Dealing with Collinearity in Large-Scale Linear System Identification
Using Gaussian Regression [3.04585143845864]
複数の相互接続型動的システムからなるネットワークの推定について検討する。
我々は、任意のインパルス応答をゼロ平均ガウス過程の実現と見なすベイズ正規化フレームワークにキャストされた戦略を開発する。
我々はマルコフ連鎖モンテカルロスキームを設計し、コリナリティを効率的に扱うことでインパルス応答を後方に再構築する。
論文 参考訳(メタデータ) (2023-02-21T19:35:47Z) - Robust identification of non-autonomous dynamical systems using
stochastic dynamics models [0.0]
本稿では, 非線形・非線形非自律系における雑音・スパースデータからのシステム識別(ID)の問題について考察する。
隠れマルコフモデル学習のためのベイズ式から導かれる目的関数を提案し,解析する。
提案手法は,システムIDに適合するスムーズさと本質的な正規化を改善したことを示す。
論文 参考訳(メタデータ) (2022-12-20T16:36:23Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
通常の微分方程式(ODE)は、機械学習において最近多くの注目を集めている。
理論的な側面、例えば、統計的推定の識別可能性と特性は、いまだに不明である。
本稿では,1つの軌道からサンプリングされた等間隔の誤差のない観測結果から,同次線形ODE系の同定可能性について十分な条件を導出する。
論文 参考訳(メタデータ) (2022-10-12T06:46:38Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
本稿では,機械系の古典力学に対する変分積分器と,ガウス過程の回帰による残留力学の学習の組み合わせを提案する。
我々は、既知のキネマティック制約を持つシステムへのアプローチを拡張し、予測の不確実性に関する公式な境界を提供する。
論文 参考訳(メタデータ) (2021-12-10T11:09:29Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - Gaussian processes meet NeuralODEs: A Bayesian framework for learning
the dynamics of partially observed systems from scarce and noisy data [0.0]
本稿では,非線形力学系の部分的,雑音的,不規則な観測からベイズ系を同定する機械学習フレームワーク(GP-NODE)を提案する。
提案手法は、微分可能プログラミングの最近の発展を利用して、通常の微分方程式解法を用いて勾配情報を伝播する。
捕食者予備システム,システム生物学,50次元ヒューマンモーションダイナミクスシステムを含む提案GP-NODE法の有効性を示すために,一連の数値的研究を行った。
論文 参考訳(メタデータ) (2021-03-04T23:42:14Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affineモデルは、ハイブリッドシステムの他のクラスに対する普遍近似、局所線型性、同値性を保証する。
本研究では,任意の領域を持つ固有入力モデル(NPWARX)を用いたPieceWise Auto Regressiveの同定に着目する。
このアーキテクチャは、機械学習の分野で開発されたMixture of Expertの概念に従って考案された。
論文 参考訳(メタデータ) (2020-09-29T12:50:33Z) - Probabilistic solution of chaotic dynamical system inverse problems
using Bayesian Artificial Neural Networks [0.0]
カオスシステムの逆問題は数値的に困難である。
モデルパラメータの小さな摂動は、推定された前方軌道において非常に大きな変化を引き起こす可能性がある。
ビザレニューラルネットワークは、モデルに同時に適合し、モデルのパラメータの不確実性を推定するために使用することができる。
論文 参考訳(メタデータ) (2020-05-26T20:35:02Z) - Bayesian differential programming for robust systems identification
under uncertainty [14.169588600819546]
本稿では,非線形力学系のノイズ,スパース,不規則な観測からベイズ系を同定する機械学習フレームワークを提案する。
提案手法は、微分可能プログラミングの最近の発展を利用して、通常の微分方程式解法を用いて勾配情報を伝播する。
スパーシティプロモーティングプリエントを用いることで、下層の潜在力学に対する解釈可能かつ同義的な表現の発見が可能になる。
論文 参考訳(メタデータ) (2020-04-15T00:51:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。