論文の概要: Online Sinkhorn: Optimal Transport distances from sample streams
- arxiv url: http://arxiv.org/abs/2003.01415v2
- Date: Thu, 2 Jul 2020 11:32:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 23:09:20.505826
- Title: Online Sinkhorn: Optimal Transport distances from sample streams
- Title(参考訳): オンラインシンクホーン:サンプルストリームからの最適な輸送距離
- Authors: Arthur Mensch (DMA), Gabriel Peyr\'e (DMA)
- Abstract要約: 本稿では、2つの任意分布間のエントロピー規則化OT距離の新しいオンライン推定器を提案する。
古典的なシンクホーンアルゴリズムと比較して,本手法は各反復における新しいサンプルを利用して,真の正則化OT距離を一貫した推定を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimal Transport (OT) distances are now routinely used as loss functions in
ML tasks. Yet, computing OT distances between arbitrary (i.e. not necessarily
discrete) probability distributions remains an open problem. This paper
introduces a new online estimator of entropy-regularized OT distances between
two such arbitrary distributions. It uses streams of samples from both
distributions to iteratively enrich a non-parametric representation of the
transportation plan. Compared to the classic Sinkhorn algorithm, our method
leverages new samples at each iteration, which enables a consistent estimation
of the true regularized OT distance. We provide a theoretical analysis of the
convergence of the online Sinkhorn algorithm, showing a nearly-O(1/n)
asymptotic sample complexity for the iterate sequence. We validate our method
on synthetic 1D to 10D data and on real 3D shape data.
- Abstract(参考訳): 最適輸送(OT)距離は、MLタスクの損失関数として日常的に使用される。
しかし、任意の(すなわち離散的ではない)確率分布間のot距離を計算することは未解決の問題である。
本稿では,2つの任意分布間のエントロピー規則化OT距離の新しいオンライン推定器を提案する。
両ディストリビューションからのサンプルストリームを使用して、輸送計画の非パラメトリック表現を反復的に強化する。
従来のシンクホーンアルゴリズムと比較すると,本手法は各イテレーションで新たなサンプルを活用し,真の正規化ot距離の一貫した推定を可能にする。
オンラインシンクホーンアルゴリズムの収束を理論的に解析し,イテレート列に対してほぼo(1/n)漸近的なサンプル複雑性を示す。
本手法は合成1d〜10dデータおよび実3d形状データを用いて検証する。
関連論文リスト
- Relative-Translation Invariant Wasserstein Distance [82.6068808353647]
距離の新しい族、相対翻訳不変ワッサーシュタイン距離(RW_p$)を導入する。
我々は、$RW_p 距離もまた、分布変換に不変な商集合 $mathcalP_p(mathbbRn)/sim$ 上で定義される実距離測度であることを示す。
論文 参考訳(メタデータ) (2024-09-04T03:41:44Z) - Faster Diffusion Sampling with Randomized Midpoints: Sequential and Parallel [10.840582511203024]
我々のアルゴリズムは、$widetilde O(log2 d)$ parallel roundsでのみ実行できるように並列化可能であることを示す。
また、我々のアルゴリズムは、$widetilde O(log2 d)$ parallel roundsでしか実行できないことを示す。
論文 参考訳(メタデータ) (2024-06-03T01:34:34Z) - Semi-Discrete Optimal Transport: Nearly Minimax Estimation With Stochastic Gradient Descent and Adaptive Entropic Regularization [38.67914746910537]
我々は,ラゲールセル推定と密度支持推定の類似性を用いて,OTマップに対して$mathcalO(t-1)$の低いバウンダリレートを証明した。
所望の速さをほぼ達成するために,サンプル数に応じて減少するエントロピー正規化スキームを設計する。
論文 参考訳(メタデータ) (2024-05-23T11:46:03Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Optimal sampling of tensor networks targeting wave function's fast
decaying tails [0.0]
等尺テンソルネットワーク状態に対する局所測定文字列の量子結果のサンプリングに最適戦略を導入する。
このアルゴリズムはサンプルの繰り返しを回避し、指数関数的に減衰する尾を持つサンプリング分布を効率的に行う。
論文 参考訳(メタデータ) (2024-01-18T19:00:05Z) - Zeroth-order Riemannian Averaging Stochastic Approximation Algorithms [19.99781875916751]
textttZo-RASAは$epsilon$-approximation 1次定常解を生成するのに最適なサンプル複雑性を実現する。
指数写像や並列輸送の代わりに幾何とベクトル輸送を用いることで,アルゴリズムの実用性を向上させる。
論文 参考訳(メタデータ) (2023-09-25T20:13:36Z) - Unsupervised Learning of Sampling Distributions for Particle Filters [80.6716888175925]
観測結果からサンプリング分布を学習する4つの方法を提案する。
実験により、学習されたサンプリング分布は、設計された最小縮退サンプリング分布よりも優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2023-02-02T15:50:21Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - Near-optimal estimation of smooth transport maps with kernel
sums-of-squares [81.02564078640275]
滑らかな条件下では、2つの分布の間の正方形ワッサーシュタイン距離は、魅力的な統計的誤差上界で効率的に計算できる。
生成的モデリングのような応用への関心の対象は、基礎となる最適輸送写像である。
そこで本研究では,地図上の統計的誤差であるL2$が,既存のミニマックス下限値とほぼ一致し,スムーズな地図推定が可能となる最初のトラクタブルアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-03T13:45:36Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
アルゴリズムの展開は、モデルベースのアルゴリズムの各イテレーションをニューラルネットワーク層として実装することにより、解釈可能で類似のニューラルネットワークアーキテクチャを生成する。
本稿では、Gershgorin disc perfect alignment (GDPA)と呼ばれる最近の線形代数定理を利用して、二進グラフの半定値プログラミング緩和(SDR)のためのプロジェクションフリーアルゴリズムをアンロールする。
実験結果から,我々の未学習ネットワークは純粋モデルベースグラフ分類器よりも優れ,純粋データ駆動ネットワークに匹敵する性能を示したが,パラメータははるかに少なかった。
論文 参考訳(メタデータ) (2021-09-10T07:01:15Z) - MongeNet: Efficient Sampler for Geometric Deep Learning [17.369783838267942]
MongeNetは高速かつ最適なトランスポートベースのサンプリングツールで、より優れた近似特性を備えたメッシュの正確な識別を可能にする。
本手法をユビキタスなランダムな一様サンプリングと比較し,近似誤差がほぼ半分であり,計算オーバーヘッドが非常に小さいことを示す。
論文 参考訳(メタデータ) (2021-04-29T17:59:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。