Exploring User Opinions of Fairness in Recommender Systems
- URL: http://arxiv.org/abs/2003.06461v2
- Date: Fri, 17 Apr 2020 20:19:42 GMT
- Title: Exploring User Opinions of Fairness in Recommender Systems
- Authors: Jessie Smith, Nasim Sonboli, Casey Fiesler, Robin Burke
- Abstract summary: We ask users what their ideas of fair treatment in recommendation might be.
We analyze what might cause discrepancies or changes between user's opinions towards fairness.
- Score: 13.749884072907163
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Algorithmic fairness for artificial intelligence has become increasingly
relevant as these systems become more pervasive in society. One realm of AI,
recommender systems, presents unique challenges for fairness due to trade offs
between optimizing accuracy for users and fairness to providers. But what is
fair in the context of recommendation--particularly when there are multiple
stakeholders? In an initial exploration of this problem, we ask users what
their ideas of fair treatment in recommendation might be, and why. We analyze
what might cause discrepancies or changes between user's opinions towards
fairness to eventually help inform the design of fairer and more transparent
recommendation algorithms.
Related papers
- Learning Recommender Systems with Soft Target: A Decoupled Perspective [49.83787742587449]
We propose a novel decoupled soft label optimization framework to consider the objectives as two aspects by leveraging soft labels.
We present a sensible soft-label generation algorithm that models a label propagation algorithm to explore users' latent interests in unobserved feedback via neighbors.
arXiv Detail & Related papers (2024-10-09T04:20:15Z) - A Survey on Fairness-aware Recommender Systems [59.23208133653637]
We present concepts of fairness in different recommendation scenarios, comprehensively categorize current advances, and introduce typical methods to promote fairness in different stages of recommender systems.
Next, we delve into the significant influence that fairness-aware recommender systems exert on real-world industrial applications.
arXiv Detail & Related papers (2023-06-01T07:08:22Z) - Improving Recommendation Fairness via Data Augmentation [66.4071365614835]
Collaborative filtering based recommendation learns users' preferences from all users' historical behavior data, and has been popular to facilitate decision making.
A recommender system is considered unfair when it does not perform equally well for different user groups according to users' sensitive attributes.
In this paper, we study how to improve recommendation fairness from the data augmentation perspective.
arXiv Detail & Related papers (2023-02-13T13:11:46Z) - CPFair: Personalized Consumer and Producer Fairness Re-ranking for
Recommender Systems [5.145741425164946]
We present an optimization-based re-ranking approach that seamlessly integrates fairness constraints from both the consumer and producer-side.
We demonstrate through large-scale experiments on 8 datasets that our proposed method is capable of improving both consumer and producer fairness without reducing overall recommendation quality.
arXiv Detail & Related papers (2022-04-17T20:38:02Z) - Balancing Accuracy and Fairness for Interactive Recommendation with
Reinforcement Learning [68.25805655688876]
Fairness in recommendation has attracted increasing attention due to bias and discrimination possibly caused by traditional recommenders.
We propose a reinforcement learning based framework, FairRec, to dynamically maintain a long-term balance between accuracy and fairness in IRS.
Extensive experiments validate that FairRec can improve fairness, while preserving good recommendation quality.
arXiv Detail & Related papers (2021-06-25T02:02:51Z) - Towards Personalized Fairness based on Causal Notion [18.5897206797918]
We introduce a framework for achieving counterfactually fair recommendations through adversary learning.
Our method can generate fairer recommendations for users with a desirable recommendation performance.
arXiv Detail & Related papers (2021-05-20T15:24:34Z) - Fairness and Transparency in Recommendation: The Users' Perspective [14.830700792215849]
We discuss user perspectives of fairness-aware recommender systems.
We propose three features that could improve user understanding of and trust in fairness-aware recommender systems.
arXiv Detail & Related papers (2021-03-16T00:42:09Z) - DeepFair: Deep Learning for Improving Fairness in Recommender Systems [63.732639864601914]
The lack of bias management in Recommender Systems leads to minority groups receiving unfair recommendations.
We propose a Deep Learning based Collaborative Filtering algorithm that provides recommendations with an optimum balance between fairness and accuracy without knowing demographic information about the users.
arXiv Detail & Related papers (2020-06-09T13:39:38Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
We analyze different groups of users according to their level of activity, and find that bias exists in recommendation performance between different groups.
We show that inactive users may be more susceptible to receiving unsatisfactory recommendations, due to insufficient training data for the inactive users.
We propose a fairness constrained approach via re-ranking to mitigate this problem in the context of explainable recommendation over knowledge graphs.
arXiv Detail & Related papers (2020-06-03T05:04:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.