論文の概要: Enhancing the Monte Carlo Tree Search Algorithm for Video Game Testing
- arxiv url: http://arxiv.org/abs/2003.07813v1
- Date: Tue, 17 Mar 2020 16:52:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-22 21:23:56.576849
- Title: Enhancing the Monte Carlo Tree Search Algorithm for Video Game Testing
- Title(参考訳): ビデオゲームテストのためのモンテカルロ木探索アルゴリズムの強化
- Authors: Sinan Ariyurek, Aysu Betin-Can, Elif Surer
- Abstract要約: 我々は,モンテカルロ木探索 (MCTS) エージェントを拡張し,ゲームテスト用にいくつかの改良を加えた。
提案した修正は, エージェントのバグ発見性能に対する影響評価, 2つの異なる計算予算下での成功度の測定, 人型エージェントの人間的類似度に対する影響評価の3つの部分で分析した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the effects of several Monte Carlo Tree Search (MCTS)
modifications for video game testing. Although MCTS modifications are highly
studied in game playing, their impacts on finding bugs are blank. We focused on
bug finding in our previous study where we introduced synthetic and human-like
test goals and we used these test goals in Sarsa and MCTS agents to find bugs.
In this study, we extend the MCTS agent with several modifications for game
testing purposes. Furthermore, we present a novel tree reuse strategy. We
experiment with these modifications by testing them on three testbed games,
four levels each, that contain 45 bugs in total. We use the General Video Game
Artificial Intelligence (GVG-AI) framework to create the testbed games and
collect 427 human tester trajectories using the GVG-AI framework. We analyze
the proposed modifications in three parts: we evaluate their effects on bug
finding performances of agents, we measure their success under two different
computational budgets, and we assess their effects on human-likeness of the
human-like agent. Our results show that MCTS modifications improve the bug
finding performance of the agents.
- Abstract(参考訳): 本稿では,いくつかのモンテカルロ木探索(mcts)がビデオゲームテストに与える影響について検討する。
MCTSの変更はゲームプレイで非常に研究されているが、バグ発見への影響は空白である。
これまでの研究ではバグ発見に焦点をあて、人工的および人間的なテスト目標を導入し、これらのテスト目標をsarsaおよびmctsエージェントでバグ発見に使用しました。
本研究では,MCTSエージェントをゲームテスト用にいくつかの改良を加えて拡張する。
さらに,新しいツリー再利用戦略を提案する。
3つのテストベッドゲームで、それぞれ4レベル、合計45のバグを含むこれらの修正を実験する。
我々は、General Video Game Artificial Intelligence(GVG-AI)フレームワークを使用して、テストベッドゲームを作成し、GVG-AIフレームワークを使用して427人のテスタートラジェクトリを収集する。
提案した修正は, エージェントのバグ発見性能に対する影響評価, 2つの異なる計算予算下での成功度の測定, 人型エージェントの人間的類似度に対する影響評価の3つの部分で分析した。
その結果,MCTSの修正により,エージェントのバグ発見性能が向上した。
関連論文リスト
- Towards a Characterisation of Monte-Carlo Tree Search Performance in Different Games [1.1567513466696948]
本稿では、そのような理解に向けて前進するために構築した初期データセットについて述べる。
このデータセットの予備分析と予測モデルをトレーニングする作業に加えて、学習した教訓と、新しい改良版データセットの今後の計画について説明する。
論文 参考訳(メタデータ) (2024-06-13T15:46:27Z) - Reinforcement Learning for High-Level Strategic Control in Tower Defense Games [47.618236610219554]
戦略ゲームにおいて、ゲームデザインの最も重要な側面の1つは、プレイヤーにとっての挑戦の感覚を維持することである。
従来のスクリプティング手法と強化学習を組み合わせた自動手法を提案する。
その結果、強化学習のような学習アプローチとスクリプトAIを組み合わせることで、AIのみを使用するよりも高性能で堅牢なエージェントが生まれることが示された。
論文 参考訳(メタデータ) (2024-06-12T08:06:31Z) - Impact of Decentralized Learning on Player Utilities in Stackelberg Games [57.08270857260131]
多くの2エージェントシステムでは、各エージェントは別々に学習し、2つのエージェントの報酬は完全に一致しない。
分散学習を用いたStackelbergゲームとしてこれらのシステムをモデル化し、標準後悔ベンチマークが少なくとも1人のプレイヤーにとって最悪の線形後悔をもたらすことを示す。
我々は,これらのベンチマークに関して,両プレイヤーにとってほぼ最適な$O(T2/3)を後悔するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-02-29T23:38:28Z) - Deriving and Evaluating a Detailed Taxonomy of Game Bugs [2.2136561577994858]
この研究の目的は、ゲーム開発者がバグに耐性のあるゲームを開発するのに役立つバグ分類を提供することだ。
ゲーム開発業界で発生したバグを報告した189件(学術文献78件,灰色111件)の資料の中から,436件の資料を分析し,MLR(Multivocal Literature Review)を行った。
MLRにより、エンドユーザーの視点から63のゲームバグカテゴリの詳細な分類を確定することができた。
論文 参考訳(メタデータ) (2023-11-28T09:51:42Z) - SUPERNOVA: Automating Test Selection and Defect Prevention in AAA Video
Games Using Risk Based Testing and Machine Learning [62.997667081978825]
従来の手法では、成長するソフトウェアシステムではスケールできないため、ビデオゲームのテストはますます難しいタスクになります。
自動化ハブとして機能しながら,テスト選択と欠陥防止を行うシステム SUPERNOVA を提案する。
この直接的な影響は、未公表のスポーツゲームタイトルの55%以上のテスト時間を減らすことが観察されている。
論文 参考訳(メタデータ) (2022-03-10T00:47:46Z) - No-Regret Learning in Time-Varying Zero-Sum Games [99.86860277006318]
固定ゼロサムゲームにおける繰り返しプレイからの学習は、ゲーム理論とオンライン学習における古典的な問題である。
提案手法は,3つの性能基準の下で,良好な保証を同時に享受できる1つのパラメータフリーアルゴリズムである。
本アルゴリズムは,ある特性を満たすブラックボックスベースラーナー群に対するメタアルゴリズムを用いた2層構造に基づく。
論文 参考訳(メタデータ) (2022-01-30T06:10:04Z) - CommonsenseQA 2.0: Exposing the Limits of AI through Gamification [126.85096257968414]
現代自然言語理解モデルの能力をテストするベンチマークを構築した。
本研究では,データ構築の枠組みとしてゲーミフィケーションを提案する。
論文 参考訳(メタデータ) (2022-01-14T06:49:15Z) - Augmenting Automated Game Testing with Deep Reinforcement Learning [0.4129225533930966]
一般的なゲームテストは、人間プレイテスターの使用、テストスクリプティングのプレイ、関連するテストデータを生成するための関心領域の事前知識に依存している。
深層強化学習(DRL)を用いたゲームテストフレームワークに自己学習メカニズムを導入する。
DRLは、テストカバレッジの向上、エクスプロイトの発見、マップの難しさ、ファーストパーソンシューティングゲーム(FPS)のテストで発生する一般的な問題の検出に使用できる。
論文 参考訳(メタデータ) (2021-03-29T11:55:15Z) - Deep Policy Networks for NPC Behaviors that Adapt to Changing Design
Parameters in Roguelike Games [137.86426963572214]
例えばRoguelikesのようなターンベースの戦略ゲームは、Deep Reinforcement Learning(DRL)にユニークな課題を提示する。
複雑なカテゴリ状態空間をより適切に処理し、設計決定によって強制的に再訓練する必要性を緩和する2つのネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-12-07T08:47:25Z) - Monte Carlo Tree Search for a single target search game on a 2-D lattice [0.0]
このプロジェクトは、AIプレイヤーが2次元格子内で静止目標を探索するゲームを想像する。
動物捕食行動のモデルであるレヴィ飛行探索(Levi Flight Search)と比較した。
論文 参考訳(メタデータ) (2020-11-29T01:07:45Z) - Griddly: A platform for AI research in games [0.0]
我々はGriddlyをゲームAI研究の新しいプラットフォームとして紹介する。
Griddlyは、高度にカスタマイズ可能なゲーム、異なるオブザーバタイプ、効率的なC++コアエンジンのユニークな組み合わせを提供する。
本稿では,RLエージェントの観察構成と一般化能力の相違について,一連の基礎実験を行った。
論文 参考訳(メタデータ) (2020-11-12T13:23:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。