論文の概要: Augmenting Automated Game Testing with Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2103.15819v1
- Date: Mon, 29 Mar 2021 11:55:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-31 15:13:14.726777
- Title: Augmenting Automated Game Testing with Deep Reinforcement Learning
- Title(参考訳): 深層強化学習による自動ゲームテストの強化
- Authors: Joakim Bergdahl, Camilo Gordillo, Konrad Tollmar, Linus Gissl\'en
- Abstract要約: 一般的なゲームテストは、人間プレイテスターの使用、テストスクリプティングのプレイ、関連するテストデータを生成するための関心領域の事前知識に依存している。
深層強化学習(DRL)を用いたゲームテストフレームワークに自己学習メカニズムを導入する。
DRLは、テストカバレッジの向上、エクスプロイトの発見、マップの難しさ、ファーストパーソンシューティングゲーム(FPS)のテストで発生する一般的な問題の検出に使用できる。
- 参考スコア(独自算出の注目度): 0.4129225533930966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: General game testing relies on the use of human play testers, play test
scripting, and prior knowledge of areas of interest to produce relevant test
data. Using deep reinforcement learning (DRL), we introduce a self-learning
mechanism to the game testing framework. With DRL, the framework is capable of
exploring and/or exploiting the game mechanics based on a user-defined,
reinforcing reward signal. As a result, test coverage is increased and
unintended game play mechanics, exploits and bugs are discovered in a multitude
of game types. In this paper, we show that DRL can be used to increase test
coverage, find exploits, test map difficulty, and to detect common problems
that arise in the testing of first-person shooter (FPS) games.
- Abstract(参考訳): 一般的なゲームテストは、人間プレイテスターの使用、テストスクリプティングのプレイ、関連するテストデータを生成するための関心領域の事前知識に依存している。
深層強化学習(DRL)を用いて,ゲームテストフレームワークに自己学習機構を導入する。
DRLにより、このフレームワークは、ユーザーが定義した報酬信号に基づいてゲームメカニクスを探索および/または活用することができる。
その結果、テストカバレッジが増加し、意図しないゲームプレイメカニズム、エクスプロイト、バグが多数のゲームタイプで発見される。
本稿では,テストカバレッジの向上,エクスプロイトの発見,テストマップの難易度,およびfps(first-person shooter)ゲームのテストで発生する一般的な問題の検出に,drlが利用できることを示す。
関連論文リスト
- Reinforcement Learning for High-Level Strategic Control in Tower Defense Games [47.618236610219554]
戦略ゲームにおいて、ゲームデザインの最も重要な側面の1つは、プレイヤーにとっての挑戦の感覚を維持することである。
従来のスクリプティング手法と強化学習を組み合わせた自動手法を提案する。
その結果、強化学習のような学習アプローチとスクリプトAIを組み合わせることで、AIのみを使用するよりも高性能で堅牢なエージェントが生まれることが示された。
論文 参考訳(メタデータ) (2024-06-12T08:06:31Z) - PlayTest: A Gamified Test Generator for Games [11.077232808482128]
Playtestは、タイリングテストプロセスを目的のある競争ゲームに変換する。
プレイテストフェーズでは,プレイテストの段階において,プレイヤーがツールを介して各ゲームにアクセスできるようにすることで,ゲームテストのタスクをクラウドソーシングするために,Playtestを使用することを想定する。
論文 参考訳(メタデータ) (2023-10-30T10:14:27Z) - BDD-Based Framework with RL Integration: An approach for videogames
automated testing [0.0]
ビデオゲームのテストは、従来のソフトウェア開発のプラクティスとは異なる。
振る舞い駆動開発(BDD)と強化学習(RL)の統合を提案する。
論文 参考訳(メタデータ) (2023-10-08T20:05:29Z) - Technical Challenges of Deploying Reinforcement Learning Agents for Game
Testing in AAA Games [58.720142291102135]
本稿では,既存の自動ゲームテストソリューションに,スクリプト型ボットをベースとして,実験的な強化学習システムを追加する取り組みについて述べる。
ゲーム制作において強化学習を活用するためのユースケースを示し、ゲームのために同じ旅をしたいと思う人なら誰でも遭遇する最大の時間をカバーしています。
我々は、機械学習、特にゲーム生産において効果的なツールである強化学習を作るのに価値があり、必要であると考えるいくつかの研究指針を提案する。
論文 参考訳(メタデータ) (2023-07-19T18:19:23Z) - Towards Informed Design and Validation Assistance in Computer Games
Using Imitation Learning [65.12226891589592]
本稿では,自動ゲーム検証とテストのための新しいアプローチを提案する。
本手法は,データ駆動型模倣学習技術を活用し,時間と労力をほとんど必要とせず,機械学習やプログラミングの知識も必要としない。
論文 参考訳(メタデータ) (2022-08-15T11:08:44Z) - Inspector: Pixel-Based Automated Game Testing via Exploration,
Detection, and Investigation [116.41186277555386]
Inspectorは、ゲームと深く統合することなく、異なるゲームに容易に適用できるゲームテストエージェントである。
インスペクタは純粋にピクセル入力に基づいており、ゲームスペースエクスプローラー、キーオブジェクト検出器、人間に似たオブジェクトインスペクタの3つの重要なモジュールから構成されている。
実験結果は,ゲーム空間の探索,キーオブジェクトの検出,オブジェクトの調査におけるインスペクタの有効性を示す。
論文 参考訳(メタデータ) (2022-07-18T04:49:07Z) - SUPERNOVA: Automating Test Selection and Defect Prevention in AAA Video
Games Using Risk Based Testing and Machine Learning [62.997667081978825]
従来の手法では、成長するソフトウェアシステムではスケールできないため、ビデオゲームのテストはますます難しいタスクになります。
自動化ハブとして機能しながら,テスト選択と欠陥防止を行うシステム SUPERNOVA を提案する。
この直接的な影響は、未公表のスポーツゲームタイトルの55%以上のテスト時間を減らすことが観察されている。
論文 参考訳(メタデータ) (2022-03-10T00:47:46Z) - DeepCrawl: Deep Reinforcement Learning for Turn-based Strategy Games [137.86426963572214]
Deep CrawlはiOSとAndroid用の完全にプレイ可能なRogueライクなプロトタイプで、すべてのエージェントがDeep Reinforcement Learning (DRL)を使用してトレーニングされたポリシーネットワークによって制御される。
本研究の目的は、近年のDRLの進歩が、ビデオゲームにおける非プレイヤーキャラクターに対する説得力のある行動モデルの開発に有効であるかどうかを理解することである。
論文 参考訳(メタデータ) (2020-12-03T13:53:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。