論文の概要: A Graduated Filter Method for Large Scale Robust Estimation
- arxiv url: http://arxiv.org/abs/2003.09080v1
- Date: Fri, 20 Mar 2020 02:51:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-21 22:34:09.030602
- Title: A Graduated Filter Method for Large Scale Robust Estimation
- Title(参考訳): 大規模ロバスト推定のための卒業フィルタ法
- Authors: Huu Le and Christopher Zach
- Abstract要約: そこで我々は,ローカル・ミニマから逃れる強力な能力を有する,ロバストな推定のための新しい解法を提案する。
我々のアルゴリズムは、多くのローカルなミニマが不足している問題を解くために、最先端の手法に基づいて構築されている。
- 参考スコア(独自算出の注目度): 32.08441889054456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the highly non-convex nature of large-scale robust parameter
estimation, avoiding poor local minima is challenging in real-world
applications where input data is contaminated by a large or unknown fraction of
outliers. In this paper, we introduce a novel solver for robust estimation that
possesses a strong ability to escape poor local minima. Our algorithm is built
upon the class of traditional graduated optimization techniques, which are
considered state-of-the-art local methods to solve problems having many poor
minima. The novelty of our work lies in the introduction of an adaptive kernel
(or residual) scaling scheme, which allows us to achieve faster convergence
rates. Like other existing methods that aim to return good local minima for
robust estimation tasks, our method relaxes the original robust problem but
adapts a filter framework from non-linear constrained optimization to
automatically choose the level of relaxation. Experimental results on real
large-scale datasets such as bundle adjustment instances demonstrate that our
proposed method achieves competitive results.
- Abstract(参考訳): 大規模なロバストパラメータ推定の非凸性のため、入力データが大きなまたは未知の外れ値によって汚染される実世界のアプリケーションでは、ローカルな最小値の低さを避けることが困難である。
本稿では,局所的な極小さから逃れる強力な能力を持つロバスト推定のための新しい解法を提案する。
提案アルゴリズムは,多くの最小値が不足する問題を解くために,最先端の局所的手法である従来手法のクラスに基づいて構築されている。
我々の研究の斬新さは適応的カーネル(または残留)スケーリングスキームの導入であり、より高速な収束率を達成することができる。
提案手法は,ロバストな推定タスクに適した局所最小値を返すことを目的とした他の手法と同様に,従来のロバストな問題を緩和するが,非線形制約最適化からフィルタフレームワークを適用して緩和のレベルを自動的に選択する。
バンドル調整インスタンスのような実大規模データセットの実験結果から,提案手法が競合的な結果を得ることを示す。
関連論文リスト
- A constrained optimization approach to improve robustness of neural networks [1.2338729811609355]
クリーンなデータに対する精度を維持しつつ、敵攻撃に対する堅牢性を向上させるために、ファインチューン事前学習ニューラルネットワークに対する非線形プログラミングに基づく新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-09-18T18:37:14Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - A Particle-based Sparse Gaussian Process Optimizer [5.672919245950197]
本稿では,下降の動的過程を利用した新しいスワム・スワムベースのフレームワークを提案する。
このアプローチの最大の利点は、降下を決定する前に現在の状態についてより深い探索を行うことである。
論文 参考訳(メタデータ) (2022-11-26T09:06:15Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
本稿では,学習時の安全性維持が不可欠である高次元非線形最適化問題に対する一般的なアプローチを提案する。
LBSGDと呼ばれるアプローチは、慎重に選択されたステップサイズで対数障壁近似を適用することに基づいている。
安全強化学習における政策課題の違反を最小限に抑えるためのアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-07-21T11:14:47Z) - Gaining Outlier Resistance with Progressive Quantiles: Fast Algorithms
and Theoretical Studies [1.6457778420360534]
任意の損失関数を強固化するために, 外部抵抗推定の枠組みを導入する。
通常のデータセットでは、データ再見積の回数を大幅に削減できるような、開始点の要件を緩和する新しい手法が提案されている。
得られた推定器は、必ずしも大域的でも大域的でもなくても、両方の低次元において最適性を楽しむことができる。
論文 参考訳(メタデータ) (2021-12-15T20:35:21Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
空間的制約が存在する場合の高次元統計量と非破壊的最適化の関連について検討する。
これらの問題に対する新規で簡単な最適化法を開発した。
結論として、効率よくステーションに収束する一階法は、これらのタスクに対して効率的なアルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-09-23T17:38:24Z) - Debiasing In-Sample Policy Performance for Small-Data, Large-Scale
Optimization [4.554894288663752]
本稿では,データ駆動最適化におけるポリシのアウト・オブ・サンプル性能の新たな推定法を提案する。
クロスバリデーションとは異なり、我々の手法はテストセットのデータを犠牲にするのを避ける。
我々は,小規模・大規模システムにおける推定器の性能を実証する。
論文 参考訳(メタデータ) (2021-07-26T19:00:51Z) - Local AdaGrad-Type Algorithm for Stochastic Convex-Concave Minimax
Problems [80.46370778277186]
大規模凸凹型ミニマックス問題は、ゲーム理論、堅牢なトレーニング、生成的敵ネットワークのトレーニングなど、多くの応用で発生する。
通信効率のよい分散外グレードアルゴリズムであるLocalAdaSientを開発した。
サーバモデル。
等質な環境と異質な環境の両方において,その有効性を実証する。
論文 参考訳(メタデータ) (2021-06-18T09:42:05Z) - Escaping Poor Local Minima in Large Scale Robust Estimation [41.304283715031204]
ロバストなパラメータ推定のための2つの新しいアプローチを紹介します。
最初のアルゴリズムは、貧弱なミニマから逃れる強力な能力を持つ適応的なカーネルスケーリング戦略を使用します。
第2のアルゴリズムは、一般化メジャー化最小化フレームワークと半二次昇降式を組み合わせて、シンプルで効率的なソルバーを得る。
論文 参考訳(メタデータ) (2021-02-22T11:58:29Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
本稿では,高密度点雲を生成するためのエンドツーエンド学習ベースのフレームワークを提案する。
まずこの問題を明示的に定式化し、重みと高次近似誤差を判定する。
そこで我々は,高次改良とともに,統一重みとソート重みを適応的に学習する軽量ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-25T14:00:18Z) - High-Dimensional Robust Mean Estimation via Gradient Descent [73.61354272612752]
一定対向分数の存在下でのロバスト平均推定の問題は勾配降下によって解けることを示す。
我々の研究は、近辺の非補題推定とロバスト統計の間の興味深い関係を確立する。
論文 参考訳(メタデータ) (2020-05-04T10:48:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。