論文の概要: DeepFake Detection: Current Challenges and Next Steps
- arxiv url: http://arxiv.org/abs/2003.09234v1
- Date: Wed, 11 Mar 2020 13:20:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-24 15:16:18.368020
- Title: DeepFake Detection: Current Challenges and Next Steps
- Title(参考訳): DeepFake Detection: 現在の課題と次のステップ
- Authors: Siwei Lyu
- Abstract要約: AIアルゴリズムによって生成された高品質のフェイクビデオとオーディオは、イベントの明確な証拠として、ビデオとオーディオのステータスに挑戦し始めている。
本稿では,これらの課題をいくつか取り上げ,この方向における研究の機会について論じる。
- 参考スコア(独自算出の注目度): 39.644822101233764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High quality fake videos and audios generated by AI-algorithms (the deep
fakes) have started to challenge the status of videos and audios as definitive
evidence of events. In this paper, we highlight a few of these challenges and
discuss the research opportunities in this direction.
- Abstract(参考訳): ai-algorithms(deep fakes)によって生成された高品質なフェイクビデオとオーディオは、ビデオとオーディオのステータスに、イベントの明確な証拠として挑戦し始めた。
本稿では,これらの課題をいくつか紹介し,研究の機会について考察する。
関連論文リスト
- AVTENet: Audio-Visual Transformer-based Ensemble Network Exploiting
Multiple Experts for Video Deepfake Detection [53.448283629898214]
近年の超現実的なディープフェイクビデオの普及は、オーディオと視覚の偽造の脅威に注意を向けている。
AI生成のフェイクビデオの検出に関するこれまでのほとんどの研究は、視覚的モダリティまたはオーディオ的モダリティのみを使用していた。
音響操作と視覚操作の両方を考慮したAVTENet(Audio-Visual Transformer-based Ensemble Network)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-19T19:01:26Z) - Comparative Analysis of Deep-Fake Algorithms [0.0]
ディープフェイク(Deepfakes)は、ディープラーニングベースのフェイクビデオとしても知られており、近年大きな関心を集めている。
これらのディープフェイクビデオは、誤った情報を広めたり、個人を偽装したり、フェイクニュースを作るといった悪質な目的で使用することができる。
ディープフェイク検出技術は、顔認識、モーション分析、音声と視覚の同期といった様々なアプローチを使用する。
論文 参考訳(メタデータ) (2023-09-06T18:17:47Z) - Deepfake CAPTCHA: A Method for Preventing Fake Calls [5.810459869589559]
リアルタイムディープフェイク対策としてD-CAPTCHAを提案する。
アプローチは、ディープフェイクモデルに挑戦して、その能力を超えるコンテンツを生成することで、相手をスポットライトに強制することである。
既存のCAPTCHAとは対照的に、コンテンツを分類する能力とは対照的に、コンテンツを作成するAIの能力に挑戦する。
論文 参考訳(メタデータ) (2023-01-08T15:34:19Z) - A Review of Challenges in Machine Learning based Automated Hate Speech
Detection [0.966840768820136]
我々は、ヘイトスピーチ識別のための機械学習やディープラーニングベースのソリューションが直面する課題に焦点を当てている。
トップレベルでは、データレベル、モデルレベル、人間レベルの課題を区別します。
この調査は、ヘイトスピーチ検出の分野で、研究者がより効率的にソリューションを設計するのに役立つだろう。
論文 参考訳(メタデータ) (2022-09-12T14:56:14Z) - Video Question Answering: Datasets, Algorithms and Challenges [99.9179674610955]
Video Question Answering (VideoQA) は、与えられたビデオに応じて自然言語の質問に答えることを目的としている。
本稿では、データセット、アルゴリズム、ユニークな課題に焦点を当てた、ビデオQAの明確な分類と包括的分析を提供する。
論文 参考訳(メタデータ) (2022-03-02T16:34:09Z) - ADD 2022: the First Audio Deep Synthesis Detection Challenge [92.41777858637556]
最初のオーディオディープ合成検出チャレンジ(ADD)は、ギャップを埋めるために動機付けられた。
ADD 2022には、低品質の偽オーディオ検出(LF)、部分的に偽オーディオ検出(PF)、オーディオ偽ゲーム(FG)の3つのトラックが含まれている。
論文 参考訳(メタデータ) (2022-02-17T03:29:20Z) - Partially Fake Audio Detection by Self-attention-based Fake Span
Discovery [89.21979663248007]
本稿では,部分的に偽の音声を検出する自己認識機構を備えた質問応答(フェイクスパン発見)戦略を導入することで,新たな枠組みを提案する。
ADD 2022の部分的に偽の音声検出トラックで第2位にランクインした。
論文 参考訳(メタデータ) (2022-02-14T13:20:55Z) - How Deep Are the Fakes? Focusing on Audio Deepfake: A Survey [0.0]
本稿は、2016年から2020年にかけてのオーディオディープフェイク研究を批判的に分析し、提供する。
このサーベイでは、1)異なるディープフェイクカテゴリ、2)どのように作成され、検出されるか、3)この領域における最新のトレンドと検出方法の欠点について、読者に要約する。
この結果から,GAN(Generative Adversarial Networks),CNN(Convolutional Neural Networks),DNN(Deep Neural Networks)がディープフェイクの生成と検出の一般的な方法であることが判明した。
論文 参考訳(メタデータ) (2021-11-28T18:28:30Z) - Detecting Deepfake Videos: An Analysis of Three Techniques [0.0]
近年のディープフェイク生成アルゴリズムの進歩は、プライバシー、セキュリティ、大量通信に危険な影響を与えている。
この問題に対処する努力は、ディープフェイクを検出するためのコンペティションや研究資金の形で盛り上がっています。
本稿では,Deepfake Detection Challengeに参加する際に,畳み込みLSTM,目まき検出,グレースケールヒストグラムの3つの手法とアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-15T20:36:23Z) - Encoding in the Dark Grand Challenge: An Overview [60.9261003831389]
低照度映像シーケンスの符号化に関するグランドチャレンジを提案する。
VVCは、エンコーディングに先立って単にビデオソースをデノベートするよりも高いパフォーマンスを達成する。
後処理画像強調法を用いることで、ビデオストリームの品質をさらに向上することができる。
論文 参考訳(メタデータ) (2020-05-07T08:22:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。