論文の概要: Learning reduced systems via deep neural networks with memory
- arxiv url: http://arxiv.org/abs/2003.09451v2
- Date: Sun, 19 Apr 2020 02:00:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-21 22:09:03.243083
- Title: Learning reduced systems via deep neural networks with memory
- Title(参考訳): メモリを用いたディープニューラルネットワークによるシステム学習
- Authors: Xiaohan Fu, Lo-Bin Chang, Dongbin Xiu
- Abstract要約: 未知の力学系に対する支配方程式を構成するための一般的な数値的手法を提案する。
この手法は、メモリ長が有限であるあらゆる実用システムに適している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a general numerical approach for constructing governing equations
for unknown dynamical systems when only data on a subset of the state variables
are available. The unknown equations for these observed variables are thus a
reduced system of the complete set of state variables. Reduced systems possess
memory integrals, based on the well known Mori-Zwanzig (MZ) formulism. Our
numerical strategy to recover the reduced system starts by formulating a
discrete approximation of the memory integral in the MZ formulation. The
resulting unknown approximate MZ equations are of finite dimensional, in the
sense that a finite number of past history data are involved. We then present a
deep neural network structure that directly incorporates the history terms to
produce memory in the network. The approach is suitable for any practical
systems with finite memory length. We then use a set of numerical examples to
demonstrate the effectiveness of our method.
- Abstract(参考訳): 状態変数のサブセット上のデータのみが利用可能である場合,未知力学系の制御方程式を構築するための一般的な数値的手法を提案する。
これらの観測変数の未知の方程式は、状態変数の完全な集合の還元系である。
還元系は、よく知られたモリ・ズワンツィヒ(MZ)フォーミュリズムに基づくメモリ積分を持つ。
我々は,MZの定式化におけるメモリ積分の離散近似を定式化することから,減算系を復元する数値戦略を開始した。
得られた未知の近似MZ方程式は、過去の履歴データが有限個存在するという意味で有限次元である。
次に、ネットワーク内のメモリを生成するために、履歴項を直接組み込むディープニューラルネットワーク構造を示す。
この手法は、メモリ長が有限であるあらゆる実用システムに適している。
次に,本手法の有効性を示すために,数値例の組を用いる。
関連論文リスト
- A Nonoverlapping Domain Decomposition Method for Extreme Learning Machines: Elliptic Problems [0.0]
エクストリーム・ラーニング・マシン(ELM)は、単一層フィードフォワードニューラルネットワークを用いて偏微分方程式(PDE)を解く手法である。
本稿では,EMMのトレーニング時間を短縮するだけでなく,並列計算にも適する非重複領域分解法(DDM)を提案する。
論文 参考訳(メタデータ) (2024-06-22T23:25:54Z) - Learning Governing Equations of Unobserved States in Dynamical Systems [0.0]
我々は、部分的に観測された力学系の制御方程式を学習するために、ハイブリッドニューラルネットワークODE構造を用いる。
本手法は, 観測されていない状態の真の支配方程式の学習に有効であることを示す。
論文 参考訳(メタデータ) (2024-04-29T10:28:14Z) - Topology-aware Embedding Memory for Continual Learning on Expanding Networks [63.35819388164267]
本稿では,メモリリプレイ技術を用いて,メモリ爆発問題に対処する枠組みを提案する。
Topology-aware Embedding Memory (TEM) を用いたPDGNNは最先端技術よりも優れている。
論文 参考訳(メタデータ) (2024-01-24T03:03:17Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
ニューラルネットワークのための新しいヘテロジニアスメモリ拡張手法を提案する。
学習可能なメモリトークンをアテンション機構付きで導入することにより、膨大な計算オーバーヘッドを伴わずに性能を効果的に向上させることができる。
In-distriion (ID) と Out-of-distriion (OOD) の両方の条件下での様々な画像およびグラフベースのタスクに対するアプローチを示す。
論文 参考訳(メタデータ) (2023-10-17T01:05:28Z) - Selective Memory Recursive Least Squares: Recast Forgetting into Memory
in RBF Neural Network Based Real-Time Learning [2.31120983784623]
放射ベース関数ニューラルネットワーク(RBFNN)に基づくリアルタイム学習タスクでは、忘れるメカニズムが広く使用されている。
本稿では,従来の記憶機構を記憶機構に再キャストする選択記憶再帰最小二乗法(SMRLS)を提案する。
SMRLSでは、RBFNNの入力空間を有限個の分割に均等に分割し、各分割から合成されたサンプルを用いて合成目的関数を開発する。
論文 参考訳(メタデータ) (2022-11-15T05:29:58Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - System Identification Through Lipschitz Regularized Deep Neural Networks [0.4297070083645048]
ニューラルネットワークを使って、データから支配方程式を学習します。
我々は、観測されたタイムスタンプデータから直接、ODEs $dotx(t) = f(t, x(t))$の右辺を再構築する。
論文 参考訳(メタデータ) (2020-09-07T17:52:51Z) - Deep learning of thermodynamics-aware reduced-order models from data [0.08699280339422537]
大規模離散化物理系の関連する潜伏変数を学習するアルゴリズムを提案する。
次に、熱力学的に一貫性のあるディープニューラルネットワークを用いて、その時間進化を予測する。
論文 参考訳(メタデータ) (2020-07-03T08:49:01Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。