Bounds on charging power of open quantum batteries
- URL: http://arxiv.org/abs/2003.09814v2
- Date: Thu, 21 Oct 2021 17:31:41 GMT
- Title: Bounds on charging power of open quantum batteries
- Authors: S. Zakavati, F.T. Tabesh and S. Salimi
- Abstract summary: We study fundamental bounds on the power of open quantum batteries from the geometric point of view.
Our results show that the maximum value of both the stored work and the corresponding power is achieved in the non-Markovian underdamped regime.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In general, quantum systems most likely undergo open system dynamics due to
their smallness and sensitivity. Energy storage devices, so-called quantum
batteries, are not excluded from this phenomenon. Here, we study fundamental
bounds on the power of open quantum batteries from the geometric point of view.
By defining an \emph{activity operator}, a tight upper bound on the charging
power is derived for the open quantum batteries in terms of the fluctuations of
the activity operator and the quantum Fisher information. The variance of the
activity operator may be interpreted as a generalized thermodynamic force,
while the quantum Fisher information describes the speed of evolution in the
state space of the battery. The thermodynamic interpretation of the upper bound
is discussed in detail. As an example, a model for the battery, taking into
account the environmental effects, is proposed, and the effect of dissipation
and decoherence during the charging process on both the stored work and the
charging power is investigated. Our results show that the upper bound is
saturated in some time intervals. Also, the maximum value of both the stored
work and the corresponding power is achieved in the non-Markovian underdamped
regime.
Related papers
- Dissipative dynamics of an open quantum battery in the BTZ spacetime [0.0]
We consider how charging performances of a quantum battery are influenced by the presence of vacuum fluctuations of a quantum field.
Different boundary conditions for quantum field may lead to different charging performance.
Our study presents a general framework to investigate relaxation effects in curved spacetime.
arXiv Detail & Related papers (2024-09-14T02:06:28Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Topological Quantum Batteries [0.3749861135832073]
We propose an innovative design for quantum batteries (QBs) that involves coupling two-level systems to a topological photonic waveguide.
We analytically explore the thermodynamic performances of QBs.
Our findings offer valuable guidance for improving quantum battery performance through structured reservoir engineering.
arXiv Detail & Related papers (2024-05-06T17:50:35Z) - Nonreciprocal Quantum Batteries [0.0]
We introduce nonreciprocity through reservoir engineering during the charging process, resulting in a substantial increase in energy accumulation.
Despite local dissipation, the nonreciprocal approach demonstrates a fourfold increase in battery energy.
In a broader context, the concept of nonreciprocal charging has significant implications for sensing, energy capture, and storage technologies.
arXiv Detail & Related papers (2024-01-10T11:50:03Z) - Impact of non-Markovian quantum Brownian motion on quantum batteries [0.0]
Quantum batteries serve as energy storage devices governed by the rules of quantum thermodynamics.
Here, we propose a model of a quantum battery wherein the system of interest can be envisaged as a battery.
We employ quantifiers like ergotropy and its (in)-coherent manifestations, as well as instantaneous and average powers, to characterize the performance of the quantum battery.
arXiv Detail & Related papers (2023-08-28T13:35:55Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - The quantum Otto cycle in a superconducting cavity in the non-adiabatic
regime [62.997667081978825]
We analyze the efficiency of the quantum Otto cycle applied to a superconducting cavity.
It is shown that, in a non-adiabatic regime, the efficiency of the quantum cycle is affected by the dynamical Casimir effect.
arXiv Detail & Related papers (2021-11-30T11:47:33Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Dissipative dynamics of an open quantum battery [0.0]
Coupling with an external environment inevitably affects the dynamics of a quantum system.
We consider how charging performances of a quantum battery, modelled as a two level system, are influenced by the presence of an Ohmic thermal reservoir.
arXiv Detail & Related papers (2020-05-28T14:11:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.