論文の概要: Tigrinya Neural Machine Translation with Transfer Learning for
Humanitarian Response
- arxiv url: http://arxiv.org/abs/2003.11523v1
- Date: Mon, 9 Mar 2020 10:34:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-25 08:52:24.960147
- Title: Tigrinya Neural Machine Translation with Transfer Learning for
Humanitarian Response
- Title(参考訳): 人道支援のためのトランスファーラーニングを用いたTigrinya Neural Machine Translation
- Authors: Alp \"Oktem, Mirko Plitt, and Grace Tang
- Abstract要約: 我々は、他のゲエズ文字言語からの転写学習を使用し、古典的な神経ベースラインよりも1.3 BLEUポイントの改善を報告している。
開発パイプラインをオープンソースライブラリとして公開し、デモアプリケーションも提供しています。
- 参考スコア(独自算出の注目度): 0.02414751774228635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We report our experiments in building a domain-specific Tigrinya-to-English
neural machine translation system. We use transfer learning from other Ge'ez
script languages and report an improvement of 1.3 BLEU points over a classic
neural baseline. We publish our development pipeline as an open-source library
and also provide a demonstration application.
- Abstract(参考訳): ドメイン固有のTigrinya-to- Englishニューラルマシン翻訳システムの構築実験について報告する。
我々は、他のゲエズ文字言語からの転写学習を使用し、古典的な神経ベースラインよりも1.3 BLEUポイントの改善を報告している。
開発パイプラインをオープンソースライブラリとして公開し、デモアプリケーションも提供しています。
関連論文リスト
- A Novel Cartography-Based Curriculum Learning Method Applied on RoNLI: The First Romanian Natural Language Inference Corpus [71.77214818319054]
自然言語推論は自然言語理解のプロキシである。
ルーマニア語のNLIコーパスは公開されていない。
58Kの訓練文対からなるルーマニア初のNLIコーパス(RoNLI)を紹介する。
論文 参考訳(メタデータ) (2024-05-20T08:41:15Z) - Hindi to English: Transformer-Based Neural Machine Translation [0.0]
我々は,インド語ヒンディー語から英語への翻訳のためにトランスフォーマーモデルを訓練し,機械翻訳(NMT)システムを開発した。
トレーニングデータを増強し、語彙を作成するために、バックトランスレーションを実装した。
これにより、IIT Bombay English-Hindi Corpusのテストセットで、最先端のBLEUスコア24.53を達成することができました。
論文 参考訳(メタデータ) (2023-09-23T00:00:09Z) - Neural Embeddings for Text [14.08706290287121]
本稿では,意味的意味を深く表現する自然言語テキストの埋め込みについて提案する。
この方法では、言語モデルにテキストから学習させ、文字通りその脳を選択して、モデルのニューロンの実際の重みを取り、ベクトルを生成する。
ニューラルネットワークの埋め込みとGPT文の埋め込みを比較した。
論文 参考訳(メタデータ) (2022-08-17T16:26:13Z) - Pretraining with Artificial Language: Studying Transferable Knowledge in
Language Models [32.27333420000134]
ニューラルネットワークエンコーダが自然言語処理にどのような構造的知識を伝達できるかを考察する。
我々は、自然言語を模倣する構造的特性を持つ人工言語を設計し、データ上にエンコーダを事前訓練し、そのエンコーダが自然言語の下流タスクにどれだけの性能を示すかを確認する。
論文 参考訳(メタデータ) (2022-03-19T13:29:48Z) - Dependency-based Mixture Language Models [53.152011258252315]
依存性に基づく混合言語モデルを紹介する。
より詳しくは、依存関係モデリングの新たな目的により、まずニューラルネットワークモデルを訓練する。
次に、前回の依存性モデリング確率分布と自己意図を混合することにより、次の確率を定式化する。
論文 参考訳(メタデータ) (2022-03-19T06:28:30Z) - DEEP: DEnoising Entity Pre-training for Neural Machine Translation [123.6686940355937]
機械翻訳モデルは通常、トレーニングコーパスで稀な名前付きエンティティの翻訳を貧弱に生成することが示されている。
文中の名前付きエンティティ翻訳精度を向上させるために,大量のモノリンガルデータと知識ベースを利用するDenoising Entity Pre-training法であるDEEPを提案する。
論文 参考訳(メタデータ) (2021-11-14T17:28:09Z) - Language Modeling, Lexical Translation, Reordering: The Training Process
of NMT through the Lens of Classical SMT [64.1841519527504]
ニューラルマシン翻訳は、翻訳プロセス全体をモデル化するために、単一のニューラルネットワークを使用する。
ニューラルネットワーク翻訳はデファクトスタンダードであるにもかかわらず、NMTモデルがトレーニングの過程でどのように異なる能力を獲得するのかは、まだ明らかになっていない。
論文 参考訳(メタデータ) (2021-09-03T09:38:50Z) - Extremely low-resource machine translation for closely related languages [0.0]
この研究は、エストニア語とフィンランド語というウラル語族の近縁言語に焦点を当てている。
多言語学習と合成コーパスにより,各言語対の翻訳品質が向上することがわかった。
転送学習と微調整は低リソースの機械翻訳に非常に効果的であり、最良の結果が得られることを示す。
論文 参考訳(メタデータ) (2021-05-27T11:27:06Z) - Continual Mixed-Language Pre-Training for Extremely Low-Resource Neural
Machine Translation [53.22775597051498]
我々は,mbart を未熟な言語に効果的に適用するための,継続的な事前学習フレームワークを提案する。
その結果,mBARTベースラインの微調整性能を一貫して改善できることが示された。
私たちのアプローチは、両方の言語が元のmBARTの事前トレーニングで見られる翻訳ペアのパフォーマンスを高めます。
論文 参考訳(メタデータ) (2021-05-09T14:49:07Z) - SJTU-NICT's Supervised and Unsupervised Neural Machine Translation
Systems for the WMT20 News Translation Task [111.91077204077817]
我々は英語・中国語・英語・ポーランド語・ドイツ語・アッパー・ソルビアンという3つの言語対の4つの翻訳指導に参加した。
言語ペアの異なる条件に基づいて、我々は多様なニューラルネットワーク翻訳(NMT)技術の実験を行った。
私たちの提出書では、主要なシステムは英語、中国語、ポーランド語、英語、ドイツ語から上セルビア語への翻訳の道順で第一位を獲得しました。
論文 参考訳(メタデータ) (2020-10-11T00:40:05Z) - Enriching the Transformer with Linguistic Factors for Low-Resource
Machine Translation [2.2344764434954256]
本研究では,現在最先端のニューラルマシン翻訳アーキテクチャであるTransformerを提案する。
特に,提案するFactered Transformerは,機械翻訳システムに付加的な知識を挿入する言語的要因を用いている。
IWSLTドイツ語-英語タスクにおけるベースライン変換器の0.8BLEUの改善を示す。
論文 参考訳(メタデータ) (2020-04-17T03:40:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。