論文の概要: Giving Up Control: Neurons as Reinforcement Learning Agents
- arxiv url: http://arxiv.org/abs/2003.11642v1
- Date: Tue, 17 Mar 2020 04:47:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-22 20:28:24.870799
- Title: Giving Up Control: Neurons as Reinforcement Learning Agents
- Title(参考訳): 制御を諦める: 強化学習エージェントとしてのニューロン
- Authors: Jordan Ott
- Abstract要約: モデルニューロンを強化学習エージェントとして導入する。
このように学習をフレーミングすることで、インテリジェントなシステムを構築するためのまったく新しいアプローチへの扉を開くのです。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence has historically relied on planning, heuristics, and
handcrafted approaches designed by experts. All the while claiming to pursue
the creation of Intelligence. This approach fails to acknowledge that
intelligence emerges from the dynamics within a complex system. Neurons in the
brain are governed by local rules, where no single neuron, or group of neurons,
coordinates or controls the others. This local structure gives rise to the
appropriate dynamics in which intelligence can emerge. Populations of neurons
must compete with their neighbors for resources, inhibition, and activity
representation. At the same time, they must cooperate, so the population and
organism can perform high-level functions. To this end, we introduce modeling
neurons as reinforcement learning agents. Where each neuron may be viewed as an
independent actor, trying to maximize its own self-interest. By framing
learning in this way, we open the door to an entirely new approach to building
intelligent systems.
- Abstract(参考訳): 人工知能は歴史的に、専門家が設計した計画、ヒューリスティック、手作りのアプローチに依存してきた。
その間 知性の創造を追求しようと 主張していました
このアプローチは、インテリジェンスが複雑なシステム内のダイナミクスから生まれることを認識できない。
脳内のニューロンは局所的な規則によって制御され、単一のニューロンやニューロン群が他のニューロンを調整または制御しない。
この局所的な構造は、知性が出現する適切なダイナミクスをもたらす。
ニューロンの集団は、資源、抑制、活動表現のために隣人と競争しなければならない。
同時に、彼らは協力しなければなりませんので、人口と生物は高いレベルの機能を実行できます。
そこで我々は,モデルニューロンを強化学習エージェントとして導入する。
各ニューロンが独立したアクターと見なされる場合、自己関心を最大化しようとする。
このように学習をフレーミングすることで、インテリジェントなシステムを構築するためのまったく新しいアプローチへの扉を開くのです。
関連論文リスト
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
我々は,側方接続とヘビアン学習に基づくニューラル操作を用いた新しい手法を開発した。
我々は,反復する側方接続におけるヘビアン学習と反ヘビアン学習が,神経活動の主部分空間を効果的に抽出できることを示した。
我々の手法は、ほとんど忘れることなくニューラルネットワークをスパイクするために一貫して解決する。
論文 参考訳(メタデータ) (2024-02-19T09:29:37Z) - A Review of Findings from Neuroscience and Cognitive Psychology as
Possible Inspiration for the Path to Artificial General Intelligence [0.0]
本論は,神経科学と認知心理学の手法を検討することによって,人工知能の探求に貢献することを目的とする。
深層学習モデルによって達成された印象的な進歩にもかかわらず、抽象的推論と因果的理解にはまだ欠点がある。
論文 参考訳(メタデータ) (2024-01-03T09:46:36Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - A Mathematical Approach to Constraining Neural Abstraction and the
Mechanisms Needed to Scale to Higher-Order Cognition [0.0]
人工知能はこの10年で大きな進歩を遂げてきたが、人工知能の最もよく知られている例である人間の脳にはまだ及ばない。
神経の過程があまり知られていないため、脳はほんの少しで跳躍を達成できる。
本稿では, グラフ理論とスペクトルグラフ理論を用いた数学的アプローチを提案する。
論文 参考訳(メタデータ) (2021-08-12T02:13:22Z) - A brain basis of dynamical intelligence for AI and computational
neuroscience [0.0]
より多くの脳のような能力は、新しい理論、モデル、および人工学習システムを設計する方法を要求するかもしれない。
本稿は,第6回US/NIH BRAIN Initiative Investigators Meetingにおける動的神経科学と機械学習に関するシンポジウムに触発されたものです。
論文 参考訳(メタデータ) (2021-05-15T19:49:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。