Causal Effect Identification in LiNGAM Models with Latent Confounders
- URL: http://arxiv.org/abs/2406.02049v1
- Date: Tue, 4 Jun 2024 07:30:27 GMT
- Title: Causal Effect Identification in LiNGAM Models with Latent Confounders
- Authors: Daniele Tramontano, Yaroslav Kivva, Saber Salehkaleybar, Mathias Drton, Negar Kiyavash,
- Abstract summary: We study the generic identifiability of causal effects in linear non-Gaussian acyclic models (LiNGAM) with latent variables.
We provide a complete graphical characterization of the identifiable direct or total causal effects among observed variables.
- Score: 20.751445296400316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the generic identifiability of causal effects in linear non-Gaussian acyclic models (LiNGAM) with latent variables. We consider the problem in two main settings: When the causal graph is known a priori, and when it is unknown. In both settings, we provide a complete graphical characterization of the identifiable direct or total causal effects among observed variables. Moreover, we propose efficient algorithms to certify the graphical conditions. Finally, we propose an adaptation of the reconstruction independent component analysis (RICA) algorithm that estimates the causal effects from the observational data given the causal graph. Experimental results show the effectiveness of the proposed method in estimating the causal effects.
Related papers
- Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - Causal Discovery of Linear Non-Gaussian Causal Models with Unobserved Confounding [1.6932009464531739]
We consider linear non-Gaussian structural equation models that involve latent confounding.
In this setting, the causal structure is identifiable, but, in general, it is not possible to identify the specific causal effects.
arXiv Detail & Related papers (2024-08-09T07:24:12Z) - Parameter identification in linear non-Gaussian causal models under general confounding [8.273471398838533]
We study identification of the linear coefficients when such models contain latent variables.
Our main result is a graphical criterion that is necessary and sufficient for deciding generic identifiability of direct causal effects.
We report on estimations based on the identification result, explore a generalization to models with feedback loops, and provide new results on the identifiability of the causal graph.
arXiv Detail & Related papers (2024-05-31T14:39:14Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
We find that transitivity acts as a key role in impeding the identifiability of latent causal representations.
Under some mild assumptions, we can show that the latent causal representations can be identified up to trivial permutation and scaling.
We propose a novel method, termed Structural caUsAl Variational autoEncoder, which directly learns latent causal representations and causal relationships among them.
arXiv Detail & Related papers (2022-08-30T11:12:59Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - Semiparametric Inference For Causal Effects In Graphical Models With
Hidden Variables [13.299431908881425]
Identification theory for causal effects in causal models associated with hidden variable directed acyclic graphs is well studied.
corresponding algorithms are underused due to the complexity of estimating the identifying functionals they output.
We bridge the gap between identification and estimation of population-level causal effects involving a single treatment and a single outcome.
arXiv Detail & Related papers (2020-03-27T22:29:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.