論文の概要: Covariance-Robust Dynamic Watermarking
- arxiv url: http://arxiv.org/abs/2003.13908v1
- Date: Tue, 31 Mar 2020 01:55:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-18 02:00:10.188387
- Title: Covariance-Robust Dynamic Watermarking
- Title(参考訳): 共分散ロバスト動的透かし
- Authors: Matt Olfat, Stephen Sloan, Pedro Hespanhol, Matt Porter, Ram
Vasudevan, and Anil Aswani
- Abstract要約: 本研究では,測定ノイズの共分散における不確実性に対処できる新しい動的透かし法を開発した。
私たちはテストが公平性の概念を満足していることを示します。
- 参考スコア(独自算出の注目度): 14.039712456943223
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Attack detection and mitigation strategies for cyberphysical systems (CPS)
are an active area of research, and researchers have developed a variety of
attack-detection tools such as dynamic watermarking. However, such methods
often make assumptions that are difficult to guarantee, such as exact knowledge
of the distribution of measurement noise. Here, we develop a new dynamic
watermarking method that we call covariance-robust dynamic watermarking, which
is able to handle uncertainties in the covariance of measurement noise.
Specifically, we consider two cases. In the first this covariance is fixed but
unknown, and in the second this covariance is slowly-varying. For our tests, we
only require knowledge of a set within which the covariance lies. Furthermore,
we connect this problem to that of algorithmic fairness and the nascent field
of fair hypothesis testing, and we show that our tests satisfy some notions of
fairness. Finally, we exhibit the efficacy of our tests on empirical examples
chosen to reflect values observed in a standard simulation model of autonomous
vehicles.
- Abstract(参考訳): サイバー物理システム(CPS)の攻撃検出と緩和戦略は研究の活発な領域であり、研究者は動的透かしのような様々な攻撃検出ツールを開発した。
しかし、そのような手法は、測定ノイズの分布の正確な知識のような保証が難しい仮定をしばしば作っている。
そこで本稿では,共分散ロバスト動的透かし(covariance-robust dynamic watermarking)と呼ぶ新しい動的透かし法を開発した。
具体的には2つの事例を考察する。
第一に、この共分散は固定されるが未知であり、第二に、この共分散はゆっくりと変化する。
テストでは、共変性が存在する集合の知識のみを必要とする。
さらに, この問題をアルゴリズム的公平性と, 初生の公正な仮説検証と結びつけ, 実験がいくつかの公平性概念を満たしていることを示す。
最後に、自動運転車の標準シミュレーションモデルで観測された値を反映する実験例において、テストの有効性を示す。
関連論文リスト
- Towards Self-Supervised Covariance Estimation in Deep Heteroscedastic Regression [102.24287051757469]
深部異方性回帰における自己教師付き共分散推定について検討する。
正規分布の間の2-ワッサーシュタイン距離の上界を導出する。
幅広い合成データセットと実データセットに対する実験により、提案された2-ワッサーシュタインと擬似ラベルアノテーションが結合した結果、計算的に安価で正確な深部ヘテロ代用回帰が導かれることが示された。
論文 参考訳(メタデータ) (2025-02-14T22:37:11Z) - Enhancing Anomaly Detection Generalization through Knowledge Exposure: The Dual Effects of Augmentation [9.740752855568202]
異常検出では、標準から逸脱し、頻繁に発生するデータセット内のインスタンスを識別する。
現在のベンチマークでは、実際のシナリオと一致しない通常のデータの多様性の低い方法を好む傾向にある。
本稿では,概念力学の理解に外部知識を統合した新しいテストプロトコルと知識公開(KE)手法を提案する。
論文 参考訳(メタデータ) (2024-06-15T12:37:36Z) - Uncertainty in Additive Feature Attribution methods [34.80932512496311]
本稿では,付加的特徴帰属説明法のクラスに焦点をあてる。
特徴の属性と不確実性との関係を考察し,相関関係をほとんど観察しない。
このようなインスタンスに対して"stable instance"という用語を作り、インスタンスを安定させる要因を診断します。
論文 参考訳(メタデータ) (2023-11-29T08:40:46Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
本研究では,所定の点における条件分散の値に関する仮説を検証し,留置手順を開発する。
既存の手法とは異なり、提案手法は分散自体の値だけでなく、対応する分散予測器の不確実性についても考慮することができる。
論文 参考訳(メタデータ) (2023-09-28T13:04:11Z) - Bootstrapped Edge Count Tests for Nonparametric Two-Sample Inference
Under Heterogeneity [5.8010446129208155]
両試料間の差異を正確に検出する新しい非パラメトリック試験法を開発した。
オンラインゲームにおけるユーザ行動検出のための総合シミュレーション研究と応用により,提案試験の非漸近性能が向上したことを示す。
論文 参考訳(メタデータ) (2023-04-26T22:25:44Z) - Doubly Stochastic Models: Learning with Unbiased Label Noises and
Inference Stability [85.1044381834036]
勾配降下のミニバッチサンプリング設定におけるラベル雑音の暗黙的正則化効果について検討した。
そのような暗黙的正則化器は、パラメータの摂動に対してモデル出力を安定化できる収束点を好んでいる。
我々の研究は、SGDをオルンシュタイン-ウレンベック類似の過程とはみなせず、近似の収束によってより一般的な結果を得る。
論文 参考訳(メタデータ) (2023-04-01T14:09:07Z) - Centrality and Consistency: Two-Stage Clean Samples Identification for
Learning with Instance-Dependent Noisy Labels [87.48541631675889]
本稿では,2段階のクリーンサンプル識別手法を提案する。
まず,クリーンサンプルの早期同定にクラスレベルの特徴クラスタリング手法を用いる。
次に, 基底真理クラス境界に近い残余のクリーンサンプルについて, 一貫性に基づく新しい分類法を提案する。
論文 参考訳(メタデータ) (2022-07-29T04:54:57Z) - Holistic Approach to Measure Sample-level Adversarial Vulnerability and
its Utility in Building Trustworthy Systems [17.707594255626216]
敵対的攻撃は、知覚不能な雑音を伴うイメージを摂動させ、誤ったモデル予測をもたらす。
本稿では,異なる視点を組み合わせることで,サンプルの敵対的脆弱性を定量化するための総合的アプローチを提案する。
サンプルレベルで確実に敵の脆弱性を推定することにより、信頼できるシステムを開発できることを実証する。
論文 参考訳(メタデータ) (2022-05-05T12:36:17Z) - A One-step Approach to Covariate Shift Adaptation [82.01909503235385]
多くの機械学習シナリオにおけるデフォルトの前提は、トレーニングとテストサンプルは同じ確率分布から引き出されることである。
予測モデルと関連する重みを1つの最適化で共同で学習する新しいワンステップアプローチを提案する。
論文 参考訳(メタデータ) (2020-07-08T11:35:47Z) - A Kernel Two-sample Test for Dynamical Systems [7.198860143325813]
データストリームが同じ分布から引き出されるかどうかを評価することは、さまざまな機械学習問題の中心にある。
これは、生体医療、経済、工学システムにおいて、そのようなシステムが多くの現実世界のプロセスに不可欠であるため、動的システムによって生成されるデータに特に関係している。
i) 関連するメトリックにおける自己相関を捉える混合の概念を導入し、(ii) データにのみ依存する混合の速度を推定する効率的な方法を提案し、(iii) 確立されたカーネルの2サンプルテストに統合する。
論文 参考訳(メタデータ) (2020-04-23T11:57:26Z) - Fundamental Tradeoffs between Invariance and Sensitivity to Adversarial
Perturbations [65.05561023880351]
敵の例は誤分類を引き起こすために作られた悪意のある入力である。
本稿では, 相補的障害モード, 不変性に基づく逆数例について検討する。
感度に基づく攻撃に対する防御は、不変性に基づく攻撃に対するモデルの精度を積極的に損なうことを示す。
論文 参考訳(メタデータ) (2020-02-11T18:50:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。