論文の概要: Gossip and Attend: Context-Sensitive Graph Representation Learning
- arxiv url: http://arxiv.org/abs/2004.00413v1
- Date: Mon, 30 Mar 2020 18:23:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-18 07:01:15.040492
- Title: Gossip and Attend: Context-Sensitive Graph Representation Learning
- Title(参考訳): Gossip and Attend: コンテキスト感性グラフ表現学習
- Authors: Zekarias T. Kefato, Sarunas Girdzijauskas
- Abstract要約: グラフ表現学習(GRL)は、高次元かつしばしばスパースグラフの低次元ベクトル表現を学習する強力な手法である。
本稿では,Gossip通信にインスパイアされた文脈依存型アルゴリズムGOATと,グラフの構造上の相互注意機構を提案する。
- 参考スコア(独自算出の注目度): 0.5493410630077189
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph representation learning (GRL) is a powerful technique for learning
low-dimensional vector representation of high-dimensional and often sparse
graphs. Most studies explore the structure and metadata associated with the
graph using random walks and employ an unsupervised or semi-supervised learning
schemes. Learning in these methods is context-free, resulting in only a single
representation per node. Recently studies have argued on the adequacy of a
single representation and proposed context-sensitive approaches, which are
capable of extracting multiple node representations for different contexts.
This proved to be highly effective in applications such as link prediction and
ranking.
However, most of these methods rely on additional textual features that
require complex and expensive RNNs or CNNs to capture high-level features or
rely on a community detection algorithm to identify multiple contexts of a
node.
In this study we show that in-order to extract high-quality context-sensitive
node representations it is not needed to rely on supplementary node features,
nor to employ computationally heavy and complex models. We propose GOAT, a
context-sensitive algorithm inspired by gossip communication and a mutual
attention mechanism simply over the structure of the graph. We show the
efficacy of GOAT using 6 real-world datasets on link prediction and node
clustering tasks and compare it against 12 popular and state-of-the-art (SOTA)
baselines. GOAT consistently outperforms them and achieves up to 12% and 19%
gain over the best performing methods on link prediction and clustering tasks,
respectively.
- Abstract(参考訳): グラフ表現学習(GRL)は高次元およびしばしばスパースグラフの低次元ベクトル表現を学習する強力な手法である。
ほとんどの研究では、ランダムウォークを用いてグラフの構造とメタデータを調べ、教師なしまたは半教師なしの学習スキームを用いる。
これらの方法での学習はコンテキストフリーであり、ノード毎にひとつの表現しかできない。
近年、単一表現の妥当性と、異なるコンテキストに対して複数のノード表現を抽出できるコンテキスト依存的アプローチが議論されている。
これはリンク予測やランキングのようなアプリケーションで非常に効果的であることが判明した。
しかし、これらの手法の多くは、高レベルの特徴を捉えるために複雑で高価なRNNやCNNを必要とする追加のテキスト機能や、ノードの複数のコンテキストを特定するためにコミュニティ検出アルゴリズムに依存する。
本研究では,高品質な文脈依存ノード表現を抽出するためには,補足ノード機能に頼る必要はなく,計算に重く複雑なモデルを採用する必要もないことを示す。
本稿では,Gossip通信にインスパイアされた文脈依存型アルゴリズムGOATと,グラフの構造上の相互注意機構を提案する。
リンク予測とノードクラスタリングタスクにおける6つの実世界のデータセットを用いたGOATの有効性を示し、それを12の人気および最先端(SOTA)ベースラインと比較する。
GOATは、それぞれリンク予測とクラスタリングタスクの最高のパフォーマンスメソッドよりも最大12%、最大19%向上している。
関連論文リスト
- Redundancy-Free Self-Supervised Relational Learning for Graph Clustering [13.176413653235311]
冗長フリーグラフクラスタリング(R$2$FGC)という,自己教師付き深層グラフクラスタリング手法を提案する。
オートエンコーダとグラフオートエンコーダに基づいて,グローバルビューとローカルビューの両方から属性レベルと構造レベルの関係情報を抽出する。
この実験は,R$2$FGCが最先端のベースラインよりも優れていることを示すために,広く使用されているベンチマークデータセット上で実施されている。
論文 参考訳(メタデータ) (2023-09-09T06:18:50Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
テキストグラフ学習におけるフラストレーションに富んだアプローチであるSimTeGを提案する。
まず、下流タスクで予め訓練されたLM上で、教師付きパラメータ効率の微調整(PEFT)を行う。
次に、微調整されたLMの最後の隠れ状態を用いてノード埋め込みを生成する。
論文 参考訳(メタデータ) (2023-08-03T07:00:04Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
数値ノード特徴とグラフ構造を入力とするグラフニューラルネットワーク(GNN)は,グラフデータを用いた各種教師付き学習タスクにおいて,優れた性能を示した。
IID(non-graph)データをGNNに簡単に組み込むことはできない。
本稿では、グラフ認識の伝播をIDデータに意図した任意のモデルで融合するロバストな積み重ねフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-16T22:46:33Z) - Inferential SIR-GN: Scalable Graph Representation Learning [0.4699313647907615]
グラフ表現学習法は、ネットワーク内のノードの数値ベクトル表現を生成する。
本研究では,ランダムグラフ上で事前学習されたモデルであるInferential SIR-GNを提案し,ノード表現を高速に計算する。
このモデルではノードの構造的役割情報を捉えることができ、ノードやグラフの分類タスクにおいて、目に見えないネットワーク上で優れた性能を示すことができる。
論文 参考訳(メタデータ) (2021-11-08T20:56:37Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Higher-Order Attribute-Enhancing Heterogeneous Graph Neural Networks [67.25782890241496]
異種ネットワーク表現学習のための高次属性強化グラフニューラルネットワーク(HAEGNN)を提案する。
HAEGNNは、リッチで異質なセマンティクスのためのメタパスとメタグラフを同時に組み込む。
ノード分類、ノードクラスタリング、可視化における最先端の手法よりも優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-04-16T04:56:38Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - Learning on Attribute-Missing Graphs [66.76561524848304]
部分ノードのみの属性が利用できるグラフがあり、他の属性が完全に欠落している可能性がある。
一般的なGNNを含む既存のグラフ学習手法では、満足な学習性能が得られない。
我々は,属性欠落グラフのための構造属性変換器(SAT)と呼ばれる新しい分布マッチングベースGNNを開発した。
論文 参考訳(メタデータ) (2020-11-03T11:09:52Z) - Sub-graph Contrast for Scalable Self-Supervised Graph Representation
Learning [21.0019144298605]
既存のグラフニューラルネットワークは、計算量やメモリコストが限られているため、完全なグラフデータで供給される。
textscSubg-Conは、中央ノードとそのサンプルサブグラフ間の強い相関を利用して、地域構造情報をキャプチャすることで提案される。
既存のグラフ表現学習アプローチと比較して、textscSubg-Conは、より弱い監視要件、モデル学習のスケーラビリティ、並列化において、顕著なパフォーマンス上のアドバンテージを持っています。
論文 参考訳(メタデータ) (2020-09-22T01:58:19Z) - Which way? Direction-Aware Attributed Graph Embedding [2.429993132301275]
グラフ埋め込みアルゴリズムは連続ベクトル空間内のグラフを効率的に表現するために用いられる。
しばしば見落とされがちな側面の1つは、グラフが向き付けられたかどうかである。
本研究は,DIAGRAMという,テキストに富んだ方向認識アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-30T13:08:19Z) - Graph Neighborhood Attentive Pooling [0.5493410630077189]
ネットワーク表現学習(NRL)は,高次元およびスパースグラフの低次元ベクトル表現を学習するための強力な手法である。
本稿では,ノード近傍の異なる部分への入場を注意型プールネットワークを用いて学習するGAPと呼ばれる新しい文脈依存アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-28T15:05:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。