A Semi-Dynamic Bus Routing Infrastructure based on MBTA Bus Data
- URL: http://arxiv.org/abs/2004.00427v1
- Date: Sun, 29 Mar 2020 13:07:37 GMT
- Title: A Semi-Dynamic Bus Routing Infrastructure based on MBTA Bus Data
- Authors: Movses Musaelian, Anane Boateng, Md Zakirul Alam Bhuiyan
- Abstract summary: We propose a semi-dynamic bus routing framework that is data-driven and responsive to relevant parameters in bus transport.
We find that this approach yields a very promising routing infrastructure that is smarter and more dynamic than the existing system.
- Score: 9.192967576803776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transportation is quickly evolving in the emerging smart city ecosystem with
personalized ride sharing services quickly advancing. Yet, the public bus
infrastructure has been slow to respond to these trends. With our research, we
propose a semi-dynamic bus routing framework that is data-driven and responsive
to relevant parameters in bus transport. We use newly published bus event data
from a bus line in Boston and several algorithmic heuristics to create this
framework and demonstrate the capabilities and results. We find that this
approach yields a very promising routing infrastructure that is smarter and
more dynamic than the existing system.
Related papers
- Online design of dynamic networks [4.6289929100615]
This paper introduces a method for the online design of dynamic networks.
We tackle this online design problem with a rolling horizon based on Monte Carlo Tree Search.
The potential of online network design is showcased for the design of a futuristic public transport network.
arXiv Detail & Related papers (2024-10-11T14:50:31Z) - Hierarchical and Decoupled BEV Perception Learning Framework for Autonomous Driving [52.808273563372126]
This paper proposes a novel hierarchical BEV perception paradigm, aiming to provide a library of fundamental perception modules and user-friendly graphical interface.
We conduct the Pretrain-Finetune strategy to effectively utilize large scale public datasets and streamline development processes.
We also present a Multi-Module Learning (MML) approach, enhancing performance through synergistic and iterative training of multiple models.
arXiv Detail & Related papers (2024-07-17T11:17:20Z) - A Dynamic Model for Bus Arrival Time Estimation based on Spatial
Patterns using Machine Learning [1.2891210250935146]
Bus arrival prediction model is proposed for forecasting the arrival time using limited data sets.
One of the routes of Tumakuru city service, Tumakuru, India, is selected and divided into two spatial patterns.
A model to dynamically predict bus arrival time is developed using the preceding trip information and the machine learning model to estimate the arrival time at a downstream bus stop.
arXiv Detail & Related papers (2022-10-03T06:35:03Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving.
Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate.
arXiv Detail & Related papers (2022-05-04T17:55:12Z) - Exploring Human Mobility for Multi-Pattern Passenger Prediction: A Graph
Learning Framework [10.75153377806738]
We propose a multi-pattern passenger flow prediction framework, MPGCN, based on Graph Convolutional Network (GCN)
We employ GCN to extract features from the graph by learning useful topology information and introduce a deep clustering method to recognize mobility patterns hidden in bus passengers.
To the best of our knowledge, this paper is the first work to adopt a multipattern approach to predict the bus passenger flow from graph learning.
arXiv Detail & Related papers (2022-02-17T06:17:23Z) - Deep Reinforcement Learning Aided Packet-Routing For Aeronautical Ad-Hoc
Networks Formed by Passenger Planes [99.54065757867554]
We invoke deep reinforcement learning for routing in AANETs aiming at minimizing the end-to-end (E2E) delay.
A deep Q-network (DQN) is conceived for capturing the relationship between the optimal routing decision and the local geographic information observed by the forwarding node.
We further exploit the knowledge concerning the system's dynamics by using a deep value network (DVN) conceived with a feedback mechanism.
arXiv Detail & Related papers (2021-10-28T14:18:56Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Estimating the Robustness of Public Transport Systems Using Machine
Learning [62.997667081978825]
Planning public transport systems is a highly complex process involving many steps.
Integrating robustness from a passenger's point of view makes the task even more challenging.
In this paper, we explore a new way of such a scenario-based robustness approximation by using methods from machine learning.
arXiv Detail & Related papers (2021-06-10T05:52:56Z) - Value Function is All You Need: A Unified Learning Framework for Ride
Hailing Platforms [57.21078336887961]
Large ride-hailing platforms, such as DiDi, Uber and Lyft, connect tens of thousands of vehicles in a city to millions of ride demands throughout the day.
We propose a unified value-based dynamic learning framework (V1D3) for tackling both tasks.
arXiv Detail & Related papers (2021-05-18T19:22:24Z) - Reducing Bus Bunching with Asynchronous Multi-Agent Reinforcement
Learning [11.168121941015013]
Bus bunching is a common phenomenon that undermines the reliability and efficiency of bus services.
We formulate route-level bus fleet control as an asynchronous multi-agent reinforcement learning problem.
We extend the classical actor-critic architecture to handle the asynchronous issue.
arXiv Detail & Related papers (2021-05-02T02:08:07Z) - BusTr: Predicting Bus Travel Times from Real-Time Traffic [11.832652376678295]
We present BusTr, a machine-learned model for translating road traffic forecasts into predictions of bus delays.
It is used by Google Maps to serve the majority of the world's public transit systems where no official real-time bus tracking is provided.
arXiv Detail & Related papers (2020-07-02T05:05:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.