論文の概要: Mixture Density Conditional Generative Adversarial Network Models
(MD-CGAN)
- arxiv url: http://arxiv.org/abs/2004.03797v3
- Date: Fri, 4 Dec 2020 03:52:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-15 08:19:25.914794
- Title: Mixture Density Conditional Generative Adversarial Network Models
(MD-CGAN)
- Title(参考訳): 混合密度条件生成逆ネットワークモデル(MD-CGAN)
- Authors: Jaleh Zand and Stephen Roberts
- Abstract要約: 時系列予測に着目した混合密度生成逆数モデル(MD-CGAN)を提案する。
出力分布としてガウス混合モデルを用いることで、MD-CGANは非ガウス的な後続予測を提供する。
- 参考スコア(独自算出の注目度): 1.0312968200748118
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Adversarial Networks (GANs) have gained significant attention in
recent years, with impressive applications highlighted in computer vision in
particular. Compared to such examples, however, there have been more limited
applications of GANs to time series modelling, including forecasting. In this
work, we present the Mixture Density Conditional Generative Adversarial Model
(MD-CGAN), with a focus on time series forecasting. We show that our model is
capable of estimating a probabilistic posterior distribution over forecasts and
that, in comparison to a set of benchmark methods, the MD-CGAN model performs
well, particularly in situations where noise is a significant component of the
observed time series. Further, by using a Gaussian mixture model as the output
distribution, MD-CGAN offers posterior predictions that are non-Gaussian.
- Abstract(参考訳): 近年,GAN (Generative Adversarial Networks) が注目されている。
しかし、そのような例と比較して、予測を含む時系列モデリングへのGANの応用はより限られている。
本稿では,時系列予測に着目した混合密度条件付き生成逆解析モデル(md-cgan)を提案する。
本モデルでは,予測よりも確率的後続分布を推定できることを示すとともに,一連のベンチマーク手法と比較して,特にノイズが観測時系列の重要な成分である状況において,MD-CGANモデルが良好に動作することを示す。
さらに、出力分布としてガウス混合モデルを用いることで、MD-CGANは非ガウス的な後続予測を提供する。
関連論文リスト
- MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
本稿では,マルチグラインド相関に基づく予測ネットワークを提案する。
予測性能を高めるために3段階の相関を同時に検討する。
注意機構に基づく予測器と条件判別器を用いて、粗い粒度の予測結果を最適化する。
論文 参考訳(メタデータ) (2024-05-30T03:32:44Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
近似機械学習モデルの集合に対する競合予測の効果について検討する。
ラーショモン集合内のモデル間の係り受けに関する理論的結果を示す。
当社のアプローチは、コンシューマ向けアプリケーションにおいて、より予測し、削減し、混乱を避けるためにどのように使用できるかを示します。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - Generalized Mixture Model for Extreme Events Forecasting in Time Series
Data [10.542258423966492]
時系列予測(TSF)は、天気予報、交通制御、株価予測など幅広い分野で広く研究されているトピックである。
時系列における極端な値は、しばしば人間と自然のシステムに大きな影響を及ぼすが、それらの稀な発生のために予測することは困難である。
本稿では,極端事象に着目した新たなフレームワークを提案する。具体的には,時系列予測のためのDeep Extreme Mixture Model with Autoencoder (DEMMA)を提案する。
論文 参考訳(メタデータ) (2023-10-11T12:36:42Z) - Precipitation nowcasting with generative diffusion models [0.0]
降水処理における拡散モデルの有効性について検討した。
本研究は, 確立されたU-Netモデルの性能と比較したものである。
論文 参考訳(メタデータ) (2023-08-13T09:51:16Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - An Energy-Based Prior for Generative Saliency [62.79775297611203]
本稿では,情報的エネルギーベースモデルを事前分布として採用する,新たな生成正当性予測フレームワークを提案する。
生成サリエンシモデルを用いて,画像から画素単位の不確実性マップを得ることができ,サリエンシ予測におけるモデル信頼度を示す。
実験結果から, エネルギーベース先行モデルを用いた生成塩分率モデルでは, 精度の高い塩分率予測だけでなく, 人間の知覚と整合した信頼性の高い不確実性マップを実現できることが示された。
論文 参考訳(メタデータ) (2022-04-19T10:51:00Z) - Probabilistic Time Series Forecasting with Implicit Quantile Networks [0.7249731529275341]
自己回帰的リカレントニューラルネットワークとインプリシット量子ネットワークを併用して、時系列ターゲット上の大規模な分布を学習する。
提案手法は, 時間分布の推定だけでなく, ポイントワイズ予測精度の観点からも好適である。
論文 参考訳(メタデータ) (2021-07-08T10:37:24Z) - Continual Learning with Fully Probabilistic Models [70.3497683558609]
機械学習の完全確率的(または生成的)モデルに基づく継続的学習のアプローチを提案する。
生成器と分類器の両方に対してガウス混合モデル(GMM)インスタンスを用いた擬似リハーサル手法を提案する。
我々は,GMRが,クラス増分学習問題に対して,非常に競合的な時間とメモリの複雑さで,最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2021-04-19T12:26:26Z) - Dynamic Gaussian Mixture based Deep Generative Model For Robust
Forecasting on Sparse Multivariate Time Series [43.86737761236125]
本研究では,孤立した特徴表現ではなく,潜在クラスタの遷移を追跡する新しい生成モデルを提案する。
新たに設計された動的ガウス混合分布が特徴であり、クラスタリング構造のダイナミクスを捉えている。
帰納的解析を可能にするために構造化推論ネットワークも設計されている。
論文 参考訳(メタデータ) (2021-03-03T04:10:07Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Deep Distributional Time Series Models and the Probabilistic Forecasting
of Intraday Electricity Prices [0.0]
本稿では,深部時系列確率モデルを構築するための2つのアプローチを提案する。
1つ目は、ESNの出力層が、追加の正規化の前に乱れと縮小がある点である。
第二のアプローチは、特徴空間上の深いコプラ過程であるガウス乱れを伴うESNの暗黙のコプラを用いる。
論文 参考訳(メタデータ) (2020-10-05T08:02:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。