論文の概要: Multi-compartment Neuron and Population Encoding Powered Spiking Neural Network for Deep Distributional Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2301.07275v2
- Date: Tue, 25 Feb 2025 02:49:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 17:42:43.916936
- Title: Multi-compartment Neuron and Population Encoding Powered Spiking Neural Network for Deep Distributional Reinforcement Learning
- Title(参考訳): 深部分布強化学習のためのマルチコンパートメントニューロンと集団符号化型スパイキングニューラルネットワーク
- Authors: Yinqian Sun, Feifei Zhao, Zhuoya Zhao, Yi Zeng,
- Abstract要約: スパイキングニューラルネットワーク(SNN)では、スパイキングニューロンが基本的な情報処理ユニットとして機能する。
本稿では,SNNに基づく脳の深部分布強化学習アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 6.0483672878162515
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Inspired by the brain's information processing using binary spikes, spiking neural networks (SNNs) offer significant reductions in energy consumption and are more adept at incorporating multi-scale biological characteristics. In SNNs, spiking neurons serve as the fundamental information processing units. However, in most models, these neurons are typically simplified, focusing primarily on the leaky integrate-and-fire (LIF) point neuron model while neglecting the structural properties of biological neurons. This simplification hampers the computational and learning capabilities of SNNs. In this paper, we propose a brain-inspired deep distributional reinforcement learning algorithm based on SNNs, which integrates a bio-inspired multi-compartment neuron (MCN) model with a population coding approach. The proposed MCN model simulates the structure and function of apical dendritic, basal dendritic, and somatic compartments, achieving computational power comparable to that of biological neurons. Additionally, we introduce an implicit fractional embedding method based on population coding of spiking neurons. We evaluated our model on Atari games, and the experimental results demonstrate that it surpasses the vanilla FQF model, which utilizes traditional artificial neural networks (ANNs), as well as the Spiking-FQF models that are based on ANN-to-SNN conversion methods. Ablation studies further reveal that the proposed multi-compartment neuron model and the quantile fraction implicit population spike representation significantly enhance the performance of MCS-FQF while also reducing power consumption.
- Abstract(参考訳): バイナリスパイクを用いた脳の情報処理にインスパイアされたスパイクニューラルネットワーク(SNN)は、エネルギー消費を大幅に削減し、マルチスケールの生物学的特徴を組み込むのに適している。
SNNでは、スパイキングニューロンが基本的な情報処理ユニットとして機能する。
しかし、ほとんどのモデルでは、これらのニューロンは典型的には単純化されており、主に生物学的ニューロンの構造的特性を無視しながら、漏れやすい積分と発火点ニューロンモデルに焦点を当てている。
これにより、SNNの計算能力と学習能力を損なう。
本稿では,SNNをベースとした脳誘発深部分布強化学習アルゴリズムを提案する。このアルゴリズムは,生体インスパイアされたマルチコンパートメントニューロン(MCN)モデルと集団符号化手法を統合する。
提案したMCNモデルは, 根尖樹状突起, 基底樹状突起および体細胞複合体の構造と機能をシミュレートし, 生体ニューロンに匹敵する計算力を達成している。
さらに、スパイキングニューロンの集団符号化に基づく暗黙の分数埋め込み法を導入する。
実験の結果,従来のニューラルネットワーク(ANN)を用いたバニラFQFモデルと,ANN-to-SNN変換に基づくスパイキングFQFモデルを上回る結果を得た。
アブレーション研究により、提案したマルチコンパートメントニューロンモデルと量子化分数暗黙的な集団スパイク表現により、MCS-FQFの性能が著しく向上し、消費電力も減少することが明らかとなった。
関連論文リスト
- Spiking World Model with Multi-Compartment Neurons for Model-based Reinforcement Learning [6.0483672878162515]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、アルゴリズムの設計と知覚の応用において大きな研究の注目を集めている。
しかし、意思決定領域におけるその可能性、特にモデルに基づく強化学習については、未解明のままである。
本稿では,複数の樹状体源からの情報を非線形に積分し,長い逐次入力を動的に処理できるマルチコンパートメントニューロンモデルを提案する。
論文 参考訳(メタデータ) (2025-03-02T03:40:10Z) - Channel-wise Parallelizable Spiking Neuron with Multiplication-free Dynamics and Large Temporal Receptive Fields [32.349167886062105]
スパイキングニューラルネットワーク(SNN)は、生物学的ニューラルネットワークにインスパイアされた洗練された神経力学とスパースバイナリアクティベーション(スパイクス)によって、ニューラルネットワーク(ANN)と区別される。
従来のニューロンモデルは反復的なステップバイステップのダイナミクスを使用し、シリアル計算とSNNの遅いトレーニング速度をもたらす。
最近の並列化可能なスパイクニューロンモデルは、SNNの訓練を加速するために、グラフィックス処理ユニットの大規模並列計算能力をフル活用するために提案されている。
論文 参考訳(メタデータ) (2025-01-24T13:44:08Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - A survey on learning models of spiking neural membrane systems and spiking neural networks [0.0]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、特定の脳のような特性を持つ、生物学的にインスパイアされたニューラルネットワークのモデルである。
SNNでは、スパイクトレインとスパイクトレインを通してニューロン間の通信が行われる。
SNPSは形式的オートマトン原理に基づくSNNの分岐と見なすことができる。
論文 参考訳(メタデータ) (2024-03-27T14:26:41Z) - Deep Pulse-Coupled Neural Networks [31.65350290424234]
ニューラルネットワーク(SNN)は、ニューロンを利用して脳の情報処理機構をキャプチャする。
本研究では、複雑な力学、すなわちパルス結合型ニューラルネットワーク(PCNN)を用いた、より生物学的に実証可能なニューラルモデルを活用する。
我々は、SNNでよく使われるLIFニューロンをPCNNニューロンに置き換えることで、ディープパルス結合ニューラルネットワーク(DPCNN)を構築する。
論文 参考訳(メタデータ) (2023-12-24T08:26:00Z) - Fully Spiking Denoising Diffusion Implicit Models [61.32076130121347]
スパイキングニューラルネットワーク(SNN)は、超高速のニューロモルフィックデバイス上で走る能力のため、かなりの注目を集めている。
本研究では,SNN内で拡散モデルを構築するために,拡散暗黙モデル (FSDDIM) を完全にスパイクする新しい手法を提案する。
提案手法は,最先端の完全スパイク生成モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-12-04T09:07:09Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
スパイキングニューラルネットワーク(SNN)は、高エネルギー効率のニューロモルフィックチップに脳にインスパイアされたインテリジェンスを実現することを目的としている。
我々は、ニューロモルフィックデータセットの事前処理、深層SNNの構築、パラメータの最適化、およびニューロモルフィックチップへのSNNのデプロイのためのフルスタックツールキットをコントリビュートする。
論文 参考訳(メタデータ) (2023-10-25T13:15:17Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Exploiting Noise as a Resource for Computation and Learning in Spiking
Neural Networks [32.0086664373154]
本研究では,雑音型スパイクニューラルネットワーク(NSNN)とノイズ駆動学習規則(NDL)を紹介する。
NSNNは、スケーラブルでフレキシブルで信頼性の高い計算をもたらす理論的なフレームワークを提供する。
論文 参考訳(メタデータ) (2023-05-25T13:21:26Z) - Multi-scale Evolutionary Neural Architecture Search for Deep Spiking
Neural Networks [7.271032282434803]
スパイキングニューラルネットワーク(SNN)のためのマルチスケール進化型ニューラルネットワーク探索(MSE-NAS)を提案する。
MSE-NASは脳にインスパイアされた間接的評価機能であるRepresentational Dissimilarity Matrices(RDMs)を介して、個々のニューロンの操作、複数の回路モチーフの自己組織化の統合、およびグローバルなモチーフ間の接続を進化させる
提案アルゴリズムは,静的データセットとニューロモルフィックデータセットのシミュレーションステップを短縮して,最先端(SOTA)性能を実現する。
論文 参考訳(メタデータ) (2023-04-21T05:36:37Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - SIT: A Bionic and Non-Linear Neuron for Spiking Neural Network [12.237928453571636]
スパイキングニューラルネットワーク(SNN)は、時間的情報処理能力と消費電力の低さから、研究者の関心を喚起している。
現在の最先端の手法は、ニューロンが単純な Leaky-Integrate-and-Fire (LIF) モデルに基づいて構築されているため、生物学的な可視性と性能を制限している。
高レベルの動的複雑さのため、現代のニューロンモデルがSNNの実践で実装されることはめったにない。
論文 参考訳(メタデータ) (2022-03-30T07:50:44Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
本稿では,各脳ネットワークに最適なGNNアーキテクチャを探索する新しい脳ネットワーク表現フレームワークBN-GNNを提案する。
提案するBN-GNNは,脳ネットワーク解析タスクにおける従来のGNNの性能を向上させる。
論文 参考訳(メタデータ) (2022-03-18T07:05:27Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Flexible Transmitter Network [84.90891046882213]
現在のニューラルネットワークはMPモデルに基づいて構築されており、通常はニューロンを他のニューロンから受信した信号の実際の重み付け集約上での活性化関数の実行として定式化する。
本稿では,フレキシブル・トランスミッタ(FT)モデルを提案する。
本稿では、最も一般的な完全接続型フィードフォワードアーキテクチャ上に構築された、フレキシブルトランスミッタネットワーク(FTNet)について述べる。
論文 参考訳(メタデータ) (2020-04-08T06:55:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。