StandardGAN: Multi-source Domain Adaptation for Semantic Segmentation of
Very High Resolution Satellite Images by Data Standardization
- URL: http://arxiv.org/abs/2004.06402v1
- Date: Tue, 14 Apr 2020 10:16:50 GMT
- Title: StandardGAN: Multi-source Domain Adaptation for Semantic Segmentation of
Very High Resolution Satellite Images by Data Standardization
- Authors: Onur Tasar, Yuliya Tarabalka, Alain Giros, Pierre Alliez, S\'ebastien
Clerc
- Abstract summary: In this work, we deal with the multi-source domain adaptation problem.
Our method, namely StandardGAN, standardizes each source and target domains so that all the data have similar data distributions.
We conduct extensive experiments on two remote sensing data sets, in which the first one consists of multiple cities from a single country, and the other one contains multiple cities from different countries.
- Score: 6.481759968656932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain adaptation for semantic segmentation has recently been actively
studied to increase the generalization capabilities of deep learning models.
The vast majority of the domain adaptation methods tackle single-source case,
where the model trained on a single source domain is adapted to a target
domain. However, these methods have limited practical real world applications,
since usually one has multiple source domains with different data
distributions. In this work, we deal with the multi-source domain adaptation
problem. Our method, namely StandardGAN, standardizes each source and target
domains so that all the data have similar data distributions. We then use the
standardized source domains to train a classifier and segment the standardized
target domain. We conduct extensive experiments on two remote sensing data
sets, in which the first one consists of multiple cities from a single country,
and the other one contains multiple cities from different countries. Our
experimental results show that the standardized data generated by StandardGAN
allow the classifiers to generate significantly better segmentation.
Related papers
- Dynamic Instance Domain Adaptation [109.53575039217094]
Most studies on unsupervised domain adaptation assume that each domain's training samples come with domain labels.
We develop a dynamic neural network with adaptive convolutional kernels to generate instance-adaptive residuals to adapt domain-agnostic deep features to each individual instance.
Our model, dubbed DIDA-Net, achieves state-of-the-art performance on several commonly used single-source and multi-source UDA datasets.
arXiv Detail & Related papers (2022-03-09T20:05:54Z) - Aligning Domain-specific Distribution and Classifier for Cross-domain
Classification from Multiple Sources [25.204055330850164]
We propose a new framework with two alignment stages for Unsupervised Domain Adaptation.
Our method can achieve remarkable results on popular benchmark datasets for image classification.
arXiv Detail & Related papers (2022-01-04T06:35:11Z) - Improving Multi-Domain Generalization through Domain Re-labeling [31.636953426159224]
We study the important link between pre-specified domain labels and the generalization performance.
We introduce a general approach for multi-domain generalization, MulDEns, that uses an ERM-based deep ensembling backbone.
We show that MulDEns does not require tailoring the augmentation strategy or the training process specific to a dataset.
arXiv Detail & Related papers (2021-12-17T23:21:50Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - Multi-Source Domain Adaptation with Collaborative Learning for Semantic
Segmentation [32.95273803359897]
Multi-source unsupervised domain adaptation(MSDA) aims at adapting models trained on multiple labeled source domains to an unlabeled target domain.
We propose a novel multi-source domain adaptation framework based on collaborative learning for semantic segmentation.
arXiv Detail & Related papers (2021-03-08T12:51:42Z) - Robust Domain-Free Domain Generalization with Class-aware Alignment [4.442096198968069]
Domain-Free Domain Generalization (DFDG) is a model-agnostic method to achieve better generalization performance on the unseen test domain.
DFDG uses novel strategies to learn domain-invariant class-discriminative features.
It obtains competitive performance on both time series sensor and image classification public datasets.
arXiv Detail & Related papers (2021-02-17T17:46:06Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
Large-scale labeled training datasets have enabled deep neural networks to excel across a wide range of benchmark vision tasks.
In many applications, it is prohibitively expensive and time-consuming to obtain large quantities of labeled data.
To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled or unlabeled target domain.
arXiv Detail & Related papers (2020-09-01T00:06:50Z) - Dual Distribution Alignment Network for Generalizable Person
Re-Identification [174.36157174951603]
Domain generalization (DG) serves as a promising solution to handle person Re-Identification (Re-ID)
We present a Dual Distribution Alignment Network (DDAN) which handles this challenge by selectively aligning distributions of multiple source domains.
We evaluate our DDAN on a large-scale Domain Generalization Re-ID (DG Re-ID) benchmark.
arXiv Detail & Related papers (2020-07-27T00:08:07Z) - Mutual Learning Network for Multi-Source Domain Adaptation [73.25974539191553]
We propose a novel multi-source domain adaptation method, Mutual Learning Network for Multiple Source Domain Adaptation (ML-MSDA)
Under the framework of mutual learning, the proposed method pairs the target domain with each single source domain to train a conditional adversarial domain adaptation network as a branch network.
The proposed method outperforms the comparison methods and achieves the state-of-the-art performance.
arXiv Detail & Related papers (2020-03-29T04:31:43Z) - Multi-source Domain Adaptation for Visual Sentiment Classification [92.53780541232773]
We propose a novel multi-source domain adaptation (MDA) method, termed Multi-source Sentiment Generative Adversarial Network (MSGAN)
To handle data from multiple source domains, MSGAN learns to find a unified sentiment latent space where data from both the source and target domains share a similar distribution.
Extensive experiments conducted on four benchmark datasets demonstrate that MSGAN significantly outperforms the state-of-the-art MDA approaches for visual sentiment classification.
arXiv Detail & Related papers (2020-01-12T08:37:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.