論文の概要: Ants can orienteer a thief in their robbery
- arxiv url: http://arxiv.org/abs/2004.07017v3
- Date: Sat, 29 Aug 2020 11:43:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 03:29:59.988658
- Title: Ants can orienteer a thief in their robbery
- Title(参考訳): アリは強盗で泥棒をオリエンテーターできる
- Authors: Jonatas B. C. Chagas and Markus Wagner
- Abstract要約: Thief Orienteering Problem (ThOP) は、2つの古典的な最適化問題の特徴(オリエンテーリング問題とKnapsack問題)を組み合わせた多成分問題である。
本稿では,問題コンポーネントを個別かつ対話的に扱う新しいパッキングとともに,Ant Colony Optimizationアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 2.061388741385401
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Thief Orienteering Problem (ThOP) is a multi-component problem that
combines features of two classic combinatorial optimization problems:
Orienteering Problem and Knapsack Problem. The ThOP is challenging due to the
given time constraint and the interaction between its components. We propose an
Ant Colony Optimization algorithm together with a new packing heuristic to deal
individually and interactively with problem components. Our approach
outperforms existing work on more than 90% of the benchmarking instances, with
an average improvement of over 300%.
- Abstract(参考訳): Thief Orienteering Problem (ThOP) は、2つの古典的な組合せ最適化問題(オリエンテーリング問題とKnapsack問題)の特徴を組み合わせた多成分問題である。
ThOPは、所定の時間制約とコンポーネント間の相互作用のため、難しい。
本稿では,問題成分を個別かつインタラクティブに扱う新しいパッキングヒューリスティックとともにantコロニー最適化アルゴリズムを提案する。
私たちのアプローチは、ベンチマークインスタンスの90%以上で既存の作業よりも優れており、平均的な改善は300%以上です。
関連論文リスト
- Training Greedy Policy for Proposal Batch Selection in Expensive Multi-Objective Combinatorial Optimization [52.80408805368928]
本稿では,バッチ取得のための新しいグリーディ型サブセット選択アルゴリズムを提案する。
赤蛍光タンパク質に関する実験により,提案手法は1.69倍少ないクエリでベースライン性能を達成できることが判明した。
論文 参考訳(メタデータ) (2024-06-21T05:57:08Z) - Addressing The Knapsack Challenge Through Cultural Algorithm
Optimization [0.0]
我々は,0-1knapsack問題の解法に特化して設計された,新しい文化アルゴリズムの変種を紹介する。
提案アルゴリズムは,集団を改良するための信念空間と,交叉率と突然変異率を動的に調節する2つの重要な機能を導入している。
我々は,このアルゴリズムがグローバルな最適点を一貫して見つけ出す上で,顕著な効率性を示す証拠を提供する。
論文 参考訳(メタデータ) (2023-10-30T17:05:19Z) - A quantum algorithm for solving 0-1 Knapsack problems [0.0]
与えられたインスタンスのすべての実現可能なソリューションを重ね合わせに生成するアプローチである"Quantum Tree Generator"を導入する。
新しい実行時計算手法を導入することで、既存のプラットフォームやシミュレータの範囲を超えて、メソッドのランタイムを予測できます。
論文 参考訳(メタデータ) (2023-10-10T13:40:30Z) - A Novel Approach for Auto-Formulation of Optimization Problems [66.94228200699997]
Natural Language for Optimization (NL4Opt) NeurIPS 2022コンペティションでは、最適化ソルバのアクセシビリティとユーザビリティの改善に重点を置いている。
本稿では,チームのソリューションについて述べる。
提案手法は,サブタスク1のF1スコアとサブタスク2の0.867の精度を達成し,それぞれ第4位,第3位を獲得した。
論文 参考訳(メタデータ) (2023-02-09T13:57:06Z) - Optimizer Amalgamation [124.33523126363728]
私たちは、Amalgamationという新しい問題の研究を動機付けています。"Teacher"アマルガメーションのプールを、より強力な問題固有のパフォーマンスを持つ単一の"学生"にどのように組み合わせるべきなのでしょうか?
まず、勾配降下による解析のプールをアマルガメートする3つの異なるメカニズムを定義する。
また, プロセスの分散を低減するため, 目標を摂動させることでプロセスの安定化を図る。
論文 参考訳(メタデータ) (2022-03-12T16:07:57Z) - Mind Your Solver! On Adversarial Attack and Defense for Combinatorial
Optimization [111.78035414744045]
我々は,最適解法に対する敵攻撃と防御のメカニズムの開発を主導する。
本稿では, グラフ構造を改良し, 解法の堅牢性を高めるための, 単純かつ効果的な防衛戦略を提案する。
論文 参考訳(メタデータ) (2021-12-28T15:10:15Z) - An Instance-Dependent Analysis for the Cooperative Multi-Player
Multi-Armed Bandit [93.97385339354318]
マルチプレイヤーマルチアーマッドバンドにおける情報共有と協調の課題について検討する。
まず, プレイヤーの最適度差を推定するために, 逐次的除去戦略への簡単な修正が可能であることを示す。
第2に,第1の結果を利用して,衝突の小さな報奨をプレイヤー間の協調に役立てる通信プロトコルを設計する。
論文 参考訳(メタデータ) (2021-11-08T23:38:47Z) - Efficiently solving the thief orienteering problem with a max-min ant
colony optimization approach [1.6317061277457]
我々は,学術的多成分問題であるThef Orienteering Problem(ThOP)に取り組む。
本稿では,Swarm-intelligenceとランダムパッキングを組み合わせたアプローチを提案する。
論文 参考訳(メタデータ) (2021-09-21T09:57:49Z) - Batch Bayesian Optimization on Permutations using Acquisition Weighted
Kernels [86.11176756341114]
決定点プロセスに基づく新しい効率的なバッチ取得方法であるLAWを紹介します。
本研究では,理論特性の知見を得るための後悔分析法を提案する。
二次代入などの置換を含むいくつかの標準問題に対する手法を評価する。
論文 参考訳(メタデータ) (2021-02-26T10:15:57Z) - A weighted-sum method for solving the bi-objective traveling thief
problem [2.061388741385401]
本研究では,旅行販売員問題とクナップサック問題を構成する旅行盗難問題の双方向定式化について検討する。
そこで本研究では,最近のコンペの9つのうち6つで参加者を上回り,さらに379の単目的問題に対して,新たな最適解を見出した。
論文 参考訳(メタデータ) (2020-11-10T13:11:55Z) - A Non-Dominated Sorting Based Customized Random-Key Genetic Algorithm
for the Bi-Objective Traveling Thief Problem [7.088487500434561]
本稿では,よく研究されたトラベリングティーフ問題 (TTP) の2目的変種を解く方法を提案する。
BI-TTPは、旅行時間全体の最小化と、収集したアイテムの利益の最大化を目的としている。
提案手法は,問題固有の特徴をカスタマイズしたバイアスランダム鍵遺伝的アルゴリズムに基づく。
論文 参考訳(メタデータ) (2020-02-11T10:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。