Entanglement is Necessary for Optimal Quantum Property Testing
- URL: http://arxiv.org/abs/2004.07869v1
- Date: Thu, 16 Apr 2020 18:28:39 GMT
- Title: Entanglement is Necessary for Optimal Quantum Property Testing
- Authors: Sebastien Bubeck, Sitan Chen, Jerry Li
- Abstract summary: We show that with independent measurements, $Omega(d4/3/epsilon2)$ is necessary, even if the measurements are chosen adaptively.
We develop several new techniques, including a chain-rule style proof of Paninski's lower bound for classical uniformity testing.
- Score: 15.58122727889318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There has been a surge of progress in recent years in developing algorithms
for testing and learning quantum states that achieve optimal copy complexity.
Unfortunately, they require the use of entangled measurements across many
copies of the underlying state and thus remain outside the realm of what is
currently experimentally feasible. A natural question is whether one can match
the copy complexity of such algorithms using only independent---but possibly
adaptively chosen---measurements on individual copies.
We answer this in the negative for arguably the most basic quantum testing
problem: deciding whether a given $d$-dimensional quantum state is equal to or
$\epsilon$-far in trace distance from the maximally mixed state. While it is
known how to achieve optimal $O(d/\epsilon^2)$ copy complexity using entangled
measurements, we show that with independent measurements,
$\Omega(d^{4/3}/\epsilon^2)$ is necessary, even if the measurements are chosen
adaptively. This resolves a question of Wright. To obtain this lower bound, we
develop several new techniques, including a chain-rule style proof of
Paninski's lower bound for classical uniformity testing, which may be of
independent interest.
Related papers
- Testing classical properties from quantum data [0.0]
We show that the speedup lost when restricting classical testers to samples can be recovered by testers that use quantum data.
For monotonicity testing, we give a quantum algorithm that uses $tildemathcalO(n2)$ function state copies as compared to the $2Omega(sqrtn)$ samples required classically.
We also present $mathcalO(1)$-copy testers for symmetry and triangle-freeness, comparing favorably to classical lower bounds of $Omega(n1/4)$ and $Omega(n
arXiv Detail & Related papers (2024-11-19T18:52:55Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Near-Optimal Bounds for Learning Gaussian Halfspaces with Random
Classification Noise [50.64137465792738]
We show that any efficient SQ algorithm for the problem requires sample complexity at least $Omega(d1/2/(maxp, epsilon)2)$.
Our lower bound suggests that this quadratic dependence on $1/epsilon$ is inherent for efficient algorithms.
arXiv Detail & Related papers (2023-07-13T18:59:28Z) - Succinct quantum testers for closeness and $k$-wise uniformity of probability distributions [2.3466828785520373]
We explore potential quantum speedups for the fundamental problem of testing the properties of closeness and $k$-wise uniformity of probability distributions.
We show that the quantum query complexities for $ell1$- and $ell2$-closeness testing are $O(sqrtn/varepsilon)$ and $O(sqrtnk/varepsilon)$.
We propose the first quantum algorithm for this problem with query complexity $O(sqrtnk/varepsilon)
arXiv Detail & Related papers (2023-04-25T15:32:37Z) - Pseudonorm Approachability and Applications to Regret Minimization [73.54127663296906]
We convert high-dimensional $ell_infty$-approachability problems to low-dimensional pseudonorm approachability problems.
We develop an algorithmic theory of pseudonorm approachability, analogous to previous work on approachability for $ell$ and other norms.
arXiv Detail & Related papers (2023-02-03T03:19:14Z) - Lower bounds for learning quantum states with single-copy measurements [3.2590610391507444]
We study the problems of quantum tomography and shadow tomography using measurements performed on individual copies of an unknown $d$-dimensional state.
In particular, this rigorously establishes the optimality of the folklore Pauli tomography" algorithm in terms of its complexity.
arXiv Detail & Related papers (2022-07-29T02:26:08Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
We provide circuit-level implementations and resource estimates for several methods of block-encoding a dense $Ntimes N$ matrix of classical data to precision $epsilon$.
We examine resource tradeoffs between the different approaches and explore implementations of two separate models of quantum random access memory (QRAM)
Our results go beyond simple query complexity and provide a clear picture into the resource costs when large amounts of classical data are assumed to be accessible to quantum algorithms.
arXiv Detail & Related papers (2022-06-07T18:00:01Z) - Tight Bounds for Quantum State Certification with Incoherent
Measurements [18.566266990940374]
When $sigma$ is the maximally mixed state $frac1d I_d$, this is known as mixedness testing.
We focus on algorithms which use incoherent measurements, i.e. which only measure one copy of $rho$ at a time.
arXiv Detail & Related papers (2022-04-14T17:59:31Z) - Distributed quantum inner product estimation [14.222887950206658]
A benchmarking task known as cross-platform verification has been proposed that aims to estimate the fidelity of states prepared on two quantum computers.
No quantum communication can be performed between the two physical platforms due to hardware constraints.
We show that the sample complexity must be at least $Omega(max1/varepsilon2,sqrtd/varepsilon)$, even in the strongest setting.
arXiv Detail & Related papers (2021-11-05T05:35:03Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z) - Locally Private Hypothesis Selection [96.06118559817057]
We output a distribution from $mathcalQ$ whose total variation distance to $p$ is comparable to the best such distribution.
We show that the constraint of local differential privacy incurs an exponential increase in cost.
Our algorithms result in exponential improvements on the round complexity of previous methods.
arXiv Detail & Related papers (2020-02-21T18:30:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.