論文の概要: How to Train your DNN: The Network Operator Edition
- arxiv url: http://arxiv.org/abs/2004.10275v1
- Date: Tue, 21 Apr 2020 20:14:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-11 07:55:16.045609
- Title: How to Train your DNN: The Network Operator Edition
- Title(参考訳): DNNのトレーニング方法: Network Operator Edition
- Authors: Michael Alan Chang, Domenic Bottini, Lisa Jian, Pranay Kumar, Aurojit
Panda, Scott Shenker
- Abstract要約: ディープ・ニューラル・ネット(Deep Neural Nets, ディープ・ニューラル・ネット, ディープ・ニューラル・ネット, ディープ・ニューラル・ネット, ディープ・ニューラル・ネット, Deep Neural Nets, ディープ・ニューラル・ネット, Deep Neural Nets, ディープ・ニューラル・ネット, ディープ・ニューラル・ネット, ディープ・ネットワーク, ディープ・ニューラル・ネット, ディープ・ネットワーク, ディープ・ネットワーク
- 参考スコア(独自算出の注目度): 1.9303395142385749
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Nets have hit quite a crest, But physical networks are where they
must rest, And here we put them all to the test, To see which network
optimization is best.
- Abstract(参考訳): ディープ・ニューラル・ネット(deep neural nets, ディープ・ニューラル・ネット)は、かなりヒットしたが、物理的なネットワークは、休むべき場所であり、ここでは、どのネットワーク最適化が最善かを確認するために、それらをテストに投入する。
関連論文リスト
- NAS-BNN: Neural Architecture Search for Binary Neural Networks [55.058512316210056]
我々は、NAS-BNNと呼ばれる二元ニューラルネットワークのための新しいニューラルネットワーク探索手法を提案する。
我々の発見したバイナリモデルファミリーは、20Mから2Mまでの幅広い操作(OP)において、以前のBNNよりも優れていた。
さらに,対象検出タスクにおける探索されたBNNの転送可能性を検証するとともに,探索されたBNNを用いたバイナリ検出器は,MSデータセット上で31.6% mAP,370万 OPsなどの新たな最先端結果を得る。
論文 参考訳(メタデータ) (2024-08-28T02:17:58Z) - An Exact Mapping From ReLU Networks to Spiking Neural Networks [3.1701886344065255]
本稿では,Rectified Linear Units (ReLUs) を用いたネットワークから,ニューロン毎のスパイクを正確に1回発射するSNNへの正確なマッピングを提案する。
より一般的には、任意の深部ReLUネットワークが、パフォーマンスを失うことなく、エネルギー効率のよい単一スパイクニューラルネットワークに置き換えられることを示す。
論文 参考訳(メタデータ) (2022-12-23T18:31:09Z) - You Can Have Better Graph Neural Networks by Not Training Weights at
All: Finding Untrained GNNs Tickets [105.24703398193843]
グラフニューラルネットワーク(GNN)の未訓練作業はまだ謎のままだ。
得られた未学習作品によって,GNNの過度なスムース化問題を大幅に軽減できることを示す。
また,そのような未学習作業が,入力摂動の分布外検出と堅牢性に優れていることも観察した。
論文 参考訳(メタデータ) (2022-11-28T14:17:36Z) - Deep Neural Networks as Complex Networks [1.704936863091649]
我々は、重み付きグラフとしてディープニューラルネットワーク(DNN)を表現するために複雑ネットワーク理論を用いる。
我々は、DNNを動的システムとして研究するためのメトリクスを導入し、その粒度は、重みから神経細胞を含む層まで様々である。
我々の測定値が低性能ネットワークと高パフォーマンスネットワークを区別していることが示される。
論文 参考訳(メタデータ) (2022-09-12T16:26:04Z) - Characterizing Learning Dynamics of Deep Neural Networks via Complex
Networks [1.0869257688521987]
複素ネットワーク理論(CNT)は、ディープニューラルネットワーク(DNN)を重み付きグラフとして表現し、それらを動的システムとして研究する。
ノード/ニューロンとレイヤ、すなわちNodes StrengthとLayers Fluctuationのメトリクスを紹介します。
本フレームワークは,学習力学のトレンドを抽出し,高精度ネットワークから低次ネットワークを分離する。
論文 参考訳(メタデータ) (2021-10-06T10:03:32Z) - Building Compact and Robust Deep Neural Networks with Toeplitz Matrices [93.05076144491146]
この論文は、コンパクトで、訓練が容易で、信頼性があり、敵の例に対して堅牢なニューラルネットワークを訓練する問題に焦点を当てている。
Toeplitzファミリーの構造化行列の特性を利用して、コンパクトでセキュアなニューラルネットワークを構築する。
論文 参考訳(メタデータ) (2021-09-02T13:58:12Z) - Explore the Knowledge contained in Network Weights to Obtain Sparse
Neural Networks [2.649890751459017]
本稿では,ニューラルネットワーク(NN)における疎結合層の自動獲得のための新しい学習手法を提案する。
タスクニューラルネットワーク(TNN)の構造を最適化するためにスイッチングニューラルネットワーク(SNN)を設計する。
論文 参考訳(メタデータ) (2021-03-26T11:29:40Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
CNNのホワイトボックス攻撃やブラックボックス攻撃に対する堅牢性について検討する。
結果は、蒸留されたCNN、エージェントベースの最新のprunedモデル、およびバイナライズニューラルネットワークのために示されています。
論文 参考訳(メタデータ) (2021-03-14T20:43:19Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
本研究では, 実数値から, 最終予測分布上のバイナリネットワークへの誘導型学習パラダイムを提案する。
提案手法は,bnn上で5.515%の絶対利得で,単純なコントラスト学習ベースラインを向上できる。
提案手法は、単純なコントラスト学習ベースラインよりも大幅に改善され、多くの主流教師付きBNN手法に匹敵する。
論文 参考訳(メタデータ) (2021-02-17T18:59:28Z) - Firefly Neural Architecture Descent: a General Approach for Growing
Neural Networks [50.684661759340145]
firefly neural architecture descentは、ニューラルネットワークを漸進的かつ動的に成長させるための一般的なフレームワークである。
ホタルの降下は、より広く、より深くネットワークを柔軟に成長させ、正確だがリソース効率のよいニューラルアーキテクチャを学習するために応用できることを示す。
特に、サイズは小さいが、最先端の手法で学習したネットワークよりも平均精度が高いネットワークを学習する。
論文 参考訳(メタデータ) (2021-02-17T04:47:18Z) - Is Each Layer Non-trivial in CNN? [11.854634156817642]
畳み込みニューラルネットワーク(CNN)モデルは、多くの分野で大きな成功を収めている。
ResNetの出現により、実際に使われているネットワークはより深くなりつつある。
トレーニングセット上でネットワークをトレーニングした後、ネットワーク畳み込みカーネルをゼロに置き換え、テストセット上で結果モデルをテストする。
論文 参考訳(メタデータ) (2020-09-09T02:17:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。