論文の概要: Uncertainty Quantification for Hyperspectral Image Denoising Frameworks
based on Low-rank Matrix Approximation
- arxiv url: http://arxiv.org/abs/2004.10959v4
- Date: Fri, 6 May 2022 10:57:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 10:15:38.035376
- Title: Uncertainty Quantification for Hyperspectral Image Denoising Frameworks
based on Low-rank Matrix Approximation
- Title(参考訳): 低ランク行列近似に基づくハイパースペクトル画像復調フレームワークの不確かさの定量化
- Authors: Jingwei Song, Shaobo Xia, Jun Wang, Mitesh Patel, and Dong Chen
- Abstract要約: Sliding-window based Low-rank matrix approximation (LRMA) は、ハイパースペクトル画像(HSI)において広く用いられている手法である。
本稿では,LRMAを用いたHSI復元のための先行自由閉形式要素量不確実性定量化手法を提案する。
- 参考スコア(独自算出の注目度): 14.324094468854186
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sliding-window based low-rank matrix approximation (LRMA) is a technique
widely used in hyperspectral images (HSIs) denoising or completion. However,
the uncertainty quantification of the restored HSI has not been addressed to
date. Accurate uncertainty quantification of the denoised HSI facilitates to
applications such as multi-source or multi-scale data fusion, data
assimilation, and product uncertainty quantification, since these applications
require an accurate approach to describe the statistical distributions of the
input data. Therefore, we propose a prior-free closed-form element-wise
uncertainty quantification method for LRMA-based HSI restoration. Our
closed-form algorithm overcomes the difficulty of the HSI patch mixing problem
caused by the sliding-window strategy used in the conventional LRMA process.
The proposed approach only requires the uncertainty of the observed HSI and
provides the uncertainty result relatively rapidly and with similar
computational complexity as the LRMA technique. We conduct extensive
experiments to validate the estimation accuracy of the proposed closed-form
uncertainty approach. The method is robust to at least 10% random impulse noise
at the cost of 10-20% of additional processing time compared to the LRMA. The
experiments indicate that the proposed closed-form uncertainty quantification
method is more applicable to real-world applications than the baseline Monte
Carlo test, which is computationally expensive. The code is available in the
attachment and will be released after the acceptance of this paper.
- Abstract(参考訳): Sliding-window based Low-rank matrix approximation (LRMA) は、ハイパースペクトル画像(HSI)において広く用いられている手法である。
しかし、復元されたhsiの不確かさの定量化は、現在まで解決されていない。
正規化hsiの正確な不確かさの定量化は、入力データの統計分布を記述するための正確なアプローチを必要とするため、マルチソースやマルチスケールのデータ融合、データ同化、製品不確実性定量化といった応用に容易である。
そこで本研究では,LRMAを用いたHSI復元のための先行自由閉形式要素量不確実性定量化手法を提案する。
本アルゴリズムは,従来のLRMAプロセスで使用されるスライディングウインドウ戦略によるHSIパッチ混合問題の難しさを克服する。
提案手法は, 観測されたhsiの不確実性のみを求め, 比較的高速で計算量もlrma法と同様の不確実性を与える。
提案する閉形式不確実性アプローチの推定精度を検証するために,広範囲な実験を行った。
LRMAに比べて処理時間の10~20%のコストで、少なくとも10%のランダムインパルスノイズに対して堅牢である。
実験の結果,提案手法は計算コストが高いモンテカルロ試験よりも実世界に適用できる可能性が示唆された。
コードは添付ファイルで利用可能であり、本論文の承認後にリリースされる予定だ。
関連論文リスト
- Data-Driven Distributionally Robust Safety Verification Using Barrier Certificates and Conditional Mean Embeddings [0.24578723416255752]
問題を非現実的な仮定にシフトすることなく,スケーラブルな形式検証アルゴリズムを開発する。
問題を非現実的な仮定にシフトさせることなく,スケーラブルな形式検証アルゴリズムを開発するためには,バリア証明書の概念を用いる。
本稿では,2乗法最適化とガウス過程エンベロープを用いて効率よくプログラムを解く方法を示す。
論文 参考訳(メタデータ) (2024-03-15T17:32:02Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
キャリブレーションされたモデルを設計するための最先端のアプローチは、ガウス過程の後方分散を膨らませることに依存している。
本稿では,バニラガウス過程の後方分散にインスパイアされた計算を用いて,予測量子化を生成するキャリブレーション手法を提案する。
我々のアプローチは合理的な仮定の下で校正されたモデルが得られることを示す。
論文 参考訳(メタデータ) (2023-02-23T12:17:36Z) - Beyond Exponentially Fast Mixing in Average-Reward Reinforcement
Learning via Multi-Level Monte Carlo Actor-Critic [61.968469104271676]
本稿では,アクター・アクターとアクター・アクター・アクター・アルゴリズムに埋め込まれた平均報酬に対して,マルチレベルモンテカルロ推定器を用いて混合時間に適応したRL手法を提案する。
不安定な報酬を伴うRL問題において,安定性に要求される技術的条件の緩和効果が,実用上優れた性能に変換されることを実験的に示す。
論文 参考訳(メタデータ) (2023-01-28T04:12:56Z) - Robust Control for Dynamical Systems With Non-Gaussian Noise via Formal
Abstractions [59.605246463200736]
雑音分布の明示的な表現に依存しない新しい制御器合成法を提案する。
まず、連続制御系を有限状態モデルに抽象化し、離散状態間の確率的遷移によってノイズを捕捉する。
我々は最先端の検証技術を用いてマルコフ決定プロセスの間隔を保証し、これらの保証が元の制御システムに受け継がれるコントローラを演算する。
論文 参考訳(メタデータ) (2023-01-04T10:40:30Z) - A Learning-Based Optimal Uncertainty Quantification Method and Its
Application to Ballistic Impact Problems [1.713291434132985]
本稿では、入力(または事前)測度が部分的に不完全であるシステムに対する最適(最大および無限)不確実性境界について述べる。
本研究では,不確実性最適化問題に対する学習基盤の枠組みを実証する。
本手法は,工学的実践における性能証明と安全性のためのマップ構築に有効であることを示す。
論文 参考訳(メタデータ) (2022-12-28T14:30:53Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
本稿では,学習時の安全性維持が不可欠である高次元非線形最適化問題に対する一般的なアプローチを提案する。
LBSGDと呼ばれるアプローチは、慎重に選択されたステップサイズで対数障壁近似を適用することに基づいている。
安全強化学習における政策課題の違反を最小限に抑えるためのアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-07-21T11:14:47Z) - Adaptive Stochastic MPC under Unknown Noise Distribution [19.03553854357296]
我々は、未知の雑音分布の下で、確率状態制約とハード入力制約を対象とする線形システムのMPC問題に対処する。
我々は、既知の雑音統計の理想的な設定のために、分布的に頑健で安定なベンチマークSMPCアルゴリズムを設計する。
我々はこのベンチマークコントローラを用いて、必要なノイズ統計をオンラインで学習する新しい適応SMPCスキームを導出する。
論文 参考訳(メタデータ) (2022-04-03T16:35:18Z) - Sampling-Based Robust Control of Autonomous Systems with Non-Gaussian
Noise [59.47042225257565]
雑音分布の明示的な表現に依存しない新しい計画法を提案する。
まず、連続系を離散状態モデルに抽象化し、状態間の確率的遷移によってノイズを捕捉する。
いわゆる区間マルコフ決定過程(iMDP)の遷移確率区間におけるこれらの境界を捉える。
論文 参考訳(メタデータ) (2021-10-25T06:18:55Z) - Improving Deterministic Uncertainty Estimation in Deep Learning for
Classification and Regression [30.112634874443494]
単一前方通過における不確かさを推定する新しいモデルを提案する。
提案手法では,バイリプシッツ特徴抽出器とガウス過程の誘導点を組み合わせ,ロバストかつ原理的不確実性推定を行う。
論文 参考訳(メタデータ) (2021-02-22T23:29:12Z) - Quasiprobability decompositions with reduced sampling overhead [4.38301148531795]
量子エラー軽減技術は、フォールトトレラントな量子エラー補正を必要とせずに、現在の量子ハードウェアのノイズを低減することができる。
本稿では, 準確率分解を雑音を考慮した方法で選択することを目的とした, 数学的最適化に基づく新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-22T19:00:06Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。